逐行解释下面的代码:from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split, GridSearchCV, KFold from sklearn.ensemble import RandomForestClassifier data = load_breast_cancer() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.3, random_state=42) kf = KFold(n_splits=5, shuffle=True, random_state=42) param_grid = {'n_estimators': range(1, 21, 1), 'max_depth': range(5, 16)} rf = RandomForestClassifier(random_state=42) grid_search = GridSearchCV(rf, param_grid=param_grid, cv=kf, n_jobs=-1) grid_search.fit(X_train, y_train) best_rf = RandomForestClassifier(n_estimators=grid_search.best_params_['n_estimators'], max_depth=grid_search.best_params_['max_depth'], random_state=42) best_rf.fit(X_train, y_train) y_pred = best_rf.predict(X_test)
时间: 2023-12-24 11:41:09 浏览: 116
Python数据集乳腺癌数据集(from sklearn.datasets import load-breast-cancer)
5星 · 资源好评率100%
这段代码的作用是使用随机森林算法对乳腺癌数据集进行分类,并找到最佳的模型参数。
首先,代码从sklearn.datasets库中导入了load_breast_cancer函数和从sklearn.model_selection库中导入了train_test_split、GridSearchCV和KFold函数以及从sklearn.ensemble库中导入了RandomForestClassifier类。
然后,代码调用load_breast_cancer()函数来加载乳腺癌数据集。接着,使用train_test_split函数将数据集分成训练集和测试集。其中,test_size参数指定测试集所占比例为30%,random_state参数用于设置随机数种子,以确保每次运行代码时得到的结果相同。
随后,使用KFold函数将训练集分成5个折叠,shuffle参数设为True表示在拆分之前对数据进行随机重排,random_state参数用于设置随机数种子。
接下来,定义一个字典param_grid,其中包含了随机森林算法的两个参数:n_estimators和max_depth。n_estimators参数表示随机森林中决策树的数量,max_depth参数表示每个决策树的最大深度。param_grid的取值范围分别为1到20和5到15。
然后,创建一个RandomForestClassifier类的实例rf,将其作为参数传递给GridSearchCV函数,用于在给定的参数空间中搜索最佳的参数组合。cv参数指定使用的交叉验证策略,n_jobs参数指定使用的CPU数量。
接着,调用fit方法来训练模型并搜索最佳参数组合,将结果存储在grid_search对象中。
接下来,创建一个新的RandomForestClassifier类的实例best_rf,使用grid_search.best_params_字典中的最佳参数组合来初始化该实例,并将其用于训练数据。最后,使用best_rf.predict方法对测试数据进行预测,将结果存储在y_pred变量中。
阅读全文