Moses方差检验代码
时间: 2023-07-03 08:22:24 浏览: 252
以下是使用Python实现的Moses方差检验代码:
```python
import numpy as np
from scipy.stats import f
def moses_variance_test(X, y, alpha=0.05):
"""
Perform Moses variance test on input data X and output variable y,
with significance level alpha.
Parameters:
X: numpy array of shape (n_samples, n_features)
Input data
y: numpy array of shape (n_samples,)
Output variable
alpha: float, optional (default=0.05)
Significance level of the test
Returns:
result: bool
True if the null hypothesis of equal variances is rejected,
False otherwise.
"""
n = X.shape[0]
p = X.shape[1]
# Compute the residuals
beta = np.linalg.inv(X.T @ X) @ X.T @ y
y_hat = X @ beta
residuals = y - y_hat
# Compute the sum of squared residuals
sse = np.sum(residuals ** 2)
# Compute the sum of squared errors for each feature
sse_j = np.zeros(p)
for j in range(p):
x_j = X[:, j]
beta_j = np.linalg.inv(x_j.T @ x_j) @ x_j.T @ residuals
y_j_hat = x_j @ beta_j
residuals_j = residuals - y_j_hat
sse_j[j] = np.sum(residuals_j ** 2)
# Compute the F-statistic
f_stat = (sse / (n - p)) / (np.sum(sse_j) / (n - 2 * p))
# Compute the p-value
p_value = 1 - f.cdf(f_stat, p, n - 2 * p)
# Compare p-value to significance level
result = p_value < alpha
return result
```
此代码实现了Moses方差检验,该检验用于确定多元回归模型中输入变量的方差是否相等。函数接受输入数据矩阵X和输出变量向量y,并返回一个布尔值,表示是否拒绝了等方差的零假设。如果返回True,则意味着输入变量之间的方差不同,反之则是相同的。
阅读全文
相关推荐

















