n_seq, seq_len, n_features = torch.stack(dataset).shape
时间: 2024-05-17 15:17:02 浏览: 133
seq2seq_tutorial_torch.rar_Torch tutorial_seq2seq_torch_英文到数字的转化
这行代码的作用是获取一个 PyTorch 数据集 `dataset` 的形状信息,并将其分别赋值给变量 `n_seq`、`seq_len`、`n_features`。
具体来说,`torch.stack(dataset)` 将数据集转换为一个张量,其中每个样本代表张量的一个子张量,而 `stack()` 方法的作用是将这些子张量沿着新的维度合并成一个张量。例如,如果原始数据集的形状为 `(100, 20, 3)`,其中 `100` 表示样本数,`20` 表示序列长度,`3` 表示特征数,则 `torch.stack(dataset)` 的形状为 `(100, 20, 3)`。
然后,使用 `shape` 属性获取张量的形状信息,并使用 `torch.stack(dataset).shape` 将其作为一个元组返回。具体来说,元组的第一个元素 `n_seq` 表示张量的第一维大小,即样本数;第二个元素 `seq_len` 表示第二维大小,即序列长度;第三个元素 `n_features` 表示第三维大小,即特征数。这些形状信息可以用于模型的输入和输出大小的定义。
阅读全文