全连接神经网络matlab程序
时间: 2023-11-06 15:00:25 浏览: 106
抱歉,作为AI语言模型,我无法提供完整的代码,但是我可以给您提供一个简单的全连接神经网络的MATLAB程序框架,供您参考:
%输入数据
X = [1,1,1;
1,0,1;
0,1,1;
0,0,1];
%输出数据
Y = [1;
0;
0;
1];
%设置神经网络的参数
input_layer_size = size(X,2); %输入层大小
hidden_layer_size = 5; %隐藏层大小
num_labels = 1; %输出层大小
%初始化随机参数
initial_Theta1 = rand(hidden_layer_size, input_layer_size + 1);
initial_Theta2 = rand(num_labels, hidden_layer_size + 1);
%将参数展开成一维向量
initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)];
%定义代价函数
costFunction = @(p) nnCostFunction(p, input_layer_size, hidden_layer_size, ...
num_labels, X, Y, lambda);
%设置优化参数
options = optimset('MaxIter', 50);
%使用fmincg函数进行优化
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options);
%使用训练好的参数进行预测
pred = predict(nn_params, input_layer_size, hidden_layer_size, num_labels, X);
%定义代价函数
function [J, grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
% 将参数恢复成矩阵形式
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
%初始化一些变量
m = size(X, 1);
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
%前向传播计算代价函数
a1 = [ones(m, 1) X];
z2 = a1 * Theta1';
a2 = [ones(size(z2, 1), 1) sigmoid(z2)];
z3 = a2 * Theta2';
a3 = sigmoid(z3);
hypothesis = a3;
%计算代价函数
for i = 1:num_labels
J = J + (-y' * log(hypothesis) - (1 - y)' * log(1 - hypothesis));
end
J = J / m;
%加入正则化项
J = J + (lambda / (2 * m)) * (sum(sum(Theta1(:, 2:end).^2)) + sum(sum(Theta2(:, 2:end).^2)));
%反向传播计算梯度
delta3 = a3 - y;
delta2 = (delta3 * Theta2(:, 2:end)) .* sigmoidGradient(z2);
Delta1 = delta2' * a1;
Delta2 = delta3' * a2;
Theta1_grad = Delta1 / m;
Theta2_grad = Delta2 / m;
%加入正则化项
Theta1_grad(:, 2:end) = Theta1_grad(:, 2:end) + (lambda / m) * Theta1(:, 2:end);
Theta2_grad(:, 2:end) = Theta2_grad(:, 2:end) + (lambda / m) * Theta2(:, 2:end);
%展开梯度
grad = [Theta1_grad(:); Theta2_grad(:)];
end
%定义sigmoid函数
function g = sigmoid(z)
g = 1.0 ./ (1.0 + exp(-z));
end
%定义sigmoid函数的导数
function g = sigmoidGradient(z)
g = sigmoid(z) .* (1 - sigmoid(z));
end
%定义预测函数
function p = predict(Theta1, Theta2, X)
m = size(X, 1);
num_labels = size(Theta2, 1);
p = zeros(size(X, 1), 1);
h1 = sigmoid([ones(m, 1) X] * Theta1');
h2 = sigmoid([ones(m, 1) h1] * Theta2');
p = h2 >= 0.5;
end
希望对您有所帮助!
阅读全文