恶意网址多模态分类识别代码实现(数据集只有网址加图片)
时间: 2023-10-06 09:10:22 浏览: 123
基于多模态特征融合的Fast-Flux恶意域名检测方法.docx
由于数据集只有网址加图片,我们需要首先将网址转换为可用的特征向量。这可以通过将网址拆分为其组成部分(例如协议、域名、路径等)并使用编码器将每个部分编码为数字向量来实现。然后,我们可以将这些特征向量与图像特征向量进行多模态分类。
以下是一个可能的实现:
```python
import numpy as np
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Input, Concatenate
from keras.layers.embeddings import Embedding
from keras.layers.convolutional import Conv1D, MaxPooling1D
from keras.utils import np_utils
from keras.models import Model
from keras.layers.merge import concatenate
from keras.callbacks import ModelCheckpoint, EarlyStopping
# 加载数据集
urls = np.load('urls.npy')
images = np.load('images.npy')
labels = np.load('labels.npy')
# 网址特征向量化
# 将网址拆分为其组成部分
protocols = []
domains = []
paths = []
for url in urls:
parts = url.split('/')
if len(parts) > 2:
protocols.append(parts[0])
domains.append(parts[2])
paths.append('/'.join(parts[3:]))
else:
protocols.append('')
domains.append('')
paths.append('')
# 使用Tokenzier将每个部分编码为数字向量
tokenizer = Tokenizer()
tokenizer.fit_on_texts(protocols + domains + paths)
protocol_seqs = tokenizer.texts_to_sequences(protocols)
domain_seqs = tokenizer.texts_to_sequences(domains)
path_seqs = tokenizer.texts_to_sequences(paths)
# 填充序列并将其转换为numpy数组
max_length = max([len(seq) for seq in protocol_seqs + domain_seqs + path_seqs])
protocol_seqs = pad_sequences(protocol_seqs, maxlen=max_length, padding='post')
domain_seqs = pad_sequences(domain_seqs, maxlen=max_length, padding='post')
path_seqs = pad_sequences(path_seqs, maxlen=max_length, padding='post')
url_features = np.hstack((protocol_seqs, domain_seqs, path_seqs))
# 对特征向量进行编码以用于分类
le = LabelEncoder()
url_labels = le.fit_transform(labels)
ohe = OneHotEncoder()
url_labels = ohe.fit_transform(url_labels.reshape(-1, 1)).toarray()
# 构建图像分类器
image_model = Sequential()
image_model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu', input_shape=(100, 100, 3)))
image_model.add(MaxPooling1D(pool_size=2))
image_model.add(Conv1D(filters=64, kernel_size=3, padding='same', activation='relu'))
image_model.add(MaxPooling1D(pool_size=2))
image_model.add(Conv1D(filters=128, kernel_size=3, padding='same', activation='relu'))
image_model.add(MaxPooling1D(pool_size=2))
image_model.add(Flatten())
image_model.add(Dense(128, activation='relu'))
# 构建网址特征分类器
url_model = Sequential()
url_model.add(Embedding(input_dim=len(tokenizer.word_index)+1, output_dim=32, input_length=max_length*3))
url_model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
url_model.add(MaxPooling1D(pool_size=2))
url_model.add(Conv1D(filters=64, kernel_size=3, padding='same', activation='relu'))
url_model.add(MaxPooling1D(pool_size=2))
url_model.add(Conv1D(filters=128, kernel_size=3, padding='same', activation='relu'))
url_model.add(MaxPooling1D(pool_size=2))
url_model.add(Flatten())
url_model.add(Dense(128, activation='relu'))
# 合并两个模型
merged = concatenate([image_model.output, url_model.output])
# 添加全连接层
merged = Dense(64, activation='relu')(merged)
merged = Dropout(0.5)(merged)
merged = Dense(len(ohe.categories_[0]), activation='softmax')(merged)
# 构建最终模型
model = Model(inputs=[image_model.input, url_model.input], outputs=merged)
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 定义回调函数
checkpoint = ModelCheckpoint('best_model.h5', monitor='val_accuracy', verbose=1, save_best_only=True, mode='max')
early_stop = EarlyStopping(monitor='val_accuracy', patience=5, verbose=1, mode='max')
# 拟合模型
model.fit([images, url_features], url_labels, validation_split=0.2, epochs=50, batch_size=32, callbacks=[checkpoint, early_stop])
```
在这个实现中,我们首先将网址拆分为其组成部分并将每个部分编码为数字向量。然后,我们将这些特征向量与图像特征向量组合起来,通过一系列卷积和池化层进行多模态分类。最终,我们将全连接层添加到模型中,并使用softmax激活函数进行分类。我们还定义了一些回调函数来在训练期间保存最佳模型和尽早停止训练以避免过度拟合。
请注意,这只是一个可能的实现,具体实现细节可能因数据集和任务而异。
阅读全文