在一个第一层为GCNmf其他层为GCN的神经网络模型中,在GCNmf层中加入Adaptive node 模块代码
时间: 2023-06-14 20:05:06 浏览: 125
两层的神经网络的代码实例
Adaptive node模块是一种能够自适应地调整节点数量的方法,可以在GCNmf层中加入。具体的代码实现可能因框架和模型而异,以下是一种可能的实现方式,供参考:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class AdaptiveNodeModule(nn.Module):
def __init__(self, in_dim, out_dim, max_nodes=1000, eps=1e-6):
super(AdaptiveNodeModule, self).__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.max_nodes = max_nodes
self.eps = eps
self.linear1 = nn.Linear(in_dim, out_dim)
self.linear2 = nn.Linear(out_dim, out_dim)
def forward(self, x, adj):
# x: [batch_size, num_nodes, in_dim]
# adj: [batch_size, num_nodes, num_nodes]
batch_size, num_nodes, _ = x.shape
# Compute node importance scores based on the node features
node_scores = torch.mean(x, dim=-1) # [batch_size, num_nodes]
node_scores = F.relu(node_scores) + self.eps # [batch_size, num_nodes]
# Select top-k nodes based on node scores
max_nodes = min(self.max_nodes, num_nodes)
_, indices = torch.topk(node_scores, max_nodes, dim=-1) # [batch_size, max_nodes]
mask = torch.zeros(batch_size, num_nodes, dtype=torch.bool, device=x.device)
mask.scatter_(-1, indices, True)
# Apply mask to the node features and adjacency matrix
x = x[mask].view(batch_size, max_nodes, self.in_dim) # [batch_size, max_nodes, in_dim]
adj = adj[:, mask, :][:, :, mask] # [batch_size, max_nodes, max_nodes]
# Apply GCNmf with adaptive node selection
x = self.linear1(x)
x = F.relu(x)
x = self.linear2(x)
x = torch.matmul(adj, x)
return x, adj
```
这个模块接收一个大小为`[batch_size, num_nodes, in_dim]`的节点特征矩阵和一个大小为`[batch_size, num_nodes, num_nodes]`的邻接矩阵,然后根据节点特征计算每个节点的重要性得分,并根据得分选择前k个节点进行GCNmf操作。最终输出新的节点特征矩阵和邻接矩阵。
阅读全文