gCn图神经网络代码
时间: 2023-09-09 20:11:27 浏览: 169
GCN图神经网络的代码如下所示:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class GraphConvolution(nn.Module):
def __init__(self, input_dim, output_dim):
super(GraphConvolution, self).__init__()
self.weight = nn.Parameter(torch.FloatTensor(input_dim, output_dim))
self.bias = nn.Parameter(torch.FloatTensor(output_dim))
def forward(self, adjacency, feature):
support = torch.mm(feature, self.weight)
output = torch.mm(adjacency, support) + self.bias
return output
class GcnNet(nn.Module):
def __init__(self, input_dim=1433):
super(GcnNet, self).__init__()
self.gcn1 = GraphConvolution(input_dim, 16)
self.gcn2 = GraphConvolution(16, 7)
def forward(self, adjacency, feature):
h = F.relu(self.gcn1(adjacency, feature))
logits = self.gcn2(adjacency, h)
return logits
```
这段代码定义了一个基于GCN的图神经网络模型。首先,它定义了一个GraphConvolution类,用于实现图卷积运算。在该类中,通过两个参数weight和bias来定义图卷积的权重和偏置。然后,在forward函数中,通过输入的邻接矩阵(adjacency)和特征矩阵(feature)进行图卷积操作,并返回输出结果。接着,定义了一个GcnNet类,该类包含两个GraphConvolution层。在forward函数中,通过两个GraphConvolution层对输入进行图卷积计算,并使用ReLU作为激活函数。最后,返回模型的输出结果。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [图神经网络(二)—GCN-pytorch版本代码详解](https://blog.csdn.net/weixin_44027006/article/details/124100199)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [GCN-图卷积神经网络算法简单实现(含python代码)](https://blog.csdn.net/weixin_50706330/article/details/127504596)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文