sklearn线性回归代码实现
时间: 2023-09-03 09:08:15 浏览: 99
很高兴能帮助你!以下是sklearn中使用线性回归模型的示例代码:
``` python
# 导入必要的包
from sklearn.linear_model import LinearRegression
import numpy as np
# 构造数据集
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3
# 训练模型
reg = LinearRegression().fit(X, y)
# 预测结果
print(reg.predict(np.array([[3, 5]])))
```
以上代码演示了如何使用线性回归模型拟合一个二维数据集,并使用模型对新数据进行预测。如果你有任何疑问,欢迎继续提问!
相关问题
sklearn 线性回归残差分析代码
在Scikit-learn中,线性回归模型并不直接提供残差分析的功能,但我们可以通过一些方法来进行线性回归模型的残差分析。以下是使用Scikit-learn进行线性回归残差分析的一般步骤:
1. 导入必要的库和模块:
```pythonimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegression```
2. 准备数据:
假设我们有自变量X和因变量y,可以使用Numpy库生成随机数据进行演示:
```python#生成随机数据np.random.seed(0)
X = np.random.rand(100,1)
y =2 +3 * X + np.random.randn(100,1)
```
3. 拟合线性回归模型:
```python# 创建线性回归模型对象model = LinearRegression()
# 拟合模型model.fit(X, y)
```
4. 计算残差:
```python# 预测值y_pred = model.predict(X)
# 计算残差residuals = y - y_pred```
5. 进行残差分析:
```python# 绘制残差图plt.scatter(y_pred, residuals)
plt.xlabel('Predicted values')
plt.ylabel('Residuals')
plt.axhline(0, color='red', linestyle='--')
plt.title('Residual Plot')
plt.show()
```
在残差图中,我们希望看到残差分布在0附近,且没有明显的模式或趋势。
此外,你还可以使用其他方法来进行进一步的残差分析,如绘制残差的直方图、Q-Q图来检查残差的正态性,或者进行统计检验来评估残差的同方差性和独立性。
请注意,Scikit-learn是一个机器学习库,主要用于建模和预测任务。如果需要更详细的统计分析和残差诊断,建议使用专门的统计分析库,如statsmodels。
sklearn线性回归
sklearn是一个Python的机器学习库,其中包含了许多常见的机器学习算法,包括线性回归。下面简要介绍如何使用sklearn进行线性回归。
首先,需要导入sklearn库和数据集。我们可以使用sklearn内置的波士顿房价数据集进行演示:
```python
from sklearn.datasets import load_boston
boston = load_boston()
X = boston.data
y = boston.target
```
接下来,我们需要将数据集分成训练集和测试集。我们可以使用train_test_split函数,将数据集随机分成训练集和测试集:
```python
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```
然后,我们可以创建一个LinearRegression对象,并使用fit函数进行训练:
```python
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
```
最后,我们可以使用predict函数对测试集进行预测,并计算出模型的评分(即R2值):
```python
from sklearn.metrics import r2_score
y_pred = model.predict(X_test)
score = r2_score(y_test, y_pred)
print("R2 score:", score)
```
完整的代码如下:
```python
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
boston = load_boston()
X = boston.data
y = boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
score = r2_score(y_test, y_pred)
print("R2 score:", score)
```
这就是使用sklearn进行线性回归的基本流程。
阅读全文