img.draw_string(pos[0], pos[1], "%s : %.2f" %(labels[obj.classid()], obj.value()), scale=2, color=(255, 0, 0))解释一下这代码

时间: 2024-04-09 18:29:59 浏览: 10
这段代码是在图像中绘制字符串的操作。具体解释如下: - `img` 是要绘制字符串的图像对象。 - `draw_string()` 是绘制字符串的函数。 - `pos[0]` 和 `pos[1]` 是字符串的起始位置坐标。 - `"%s : %.2f" %(labels[obj.classid()], obj.value())` 是要绘制的字符串内容。这里使用了字符串格式化操作符 `%` 来将对象的类别和值插入到字符串中。 - `scale=2` 是指定字符串的缩放比例为2倍。 - `color=(255, 0, 0)` 是指定字符串的颜色为红色。 总的来说,这段代码的作用是在图像中指定位置绘制一个字符串,字符串内容包括对象的类别和值,并且字符串的颜色为红色,缩放比例为2倍。
相关问题

if not labels: with open('labels.txt','r') as f: exec(f.read()) if not labels: print("no labels.txt") img = image.Image(size=(320, 240)) img.draw_string(90, 110, "no labels.txt", color=(255, 0, 0), scale=2) lcd.display(img) return 1 try: img = image.Image("startup.jpg") lcd.display(img) except Exception: img = image.Image(size=(320, 240)) img.draw_string(90, 110, "loading model...", color=(255, 255, 255), scale=2) lcd.display(img) try: task = None task = kpu.load("/sd/model-11975.kmodel") kpu.init_yolo2(task, 0.5, 0.3, 5, anchors) # threshold:[0,1], nms_value: [0, 1] while(True): img = sensor.snapshot() t = time.ticks_ms() objects = kpu.run_yolo2(task, img) t = time.ticks_ms() - t if objects: for obj in objects: pos = obj.rect() img.draw_rectangle(pos) img.draw_string(pos[0], pos[1], "%s : %.2f" %(labels[obj.classid()], obj.value()), scale=2, color=(255, 0, 0)) img.draw_string(0, 200, "t:%dms" %(t), scale=2, color=(255, 0, 0)) lcd.display(img) except Exception as e: raise e finally: if not task is None: kpu.deinit(task)

这段代码包含了一系列操作,用于加载模型并在传感器上运行目标检测任务。 首先,代码检查是否存在`labels`。如果`labels`为空,则尝试从名为`labels.txt`的文件中加载标签。它使用`open()`函数打开文件,并使用`exec()`函数执行文件内容。这样可以将文件中定义的变量和函数加载到当前的命名空间中。 如果仍然没有加载成功或找不到`labels.txt`文件,则打印错误信息,并在LCD屏幕上显示相应的提示信息,然后返回1。 接下来,代码尝试加载名为`startup.jpg`的图像,并在LCD屏幕上显示该图像。如果加载失败,则创建一个大小为(320, 240)的图像,并在图像上绘制"loading model..."的提示信息,然后将图像显示在LCD屏幕上。 然后,代码使用`kpu.load()`函数加载模型文件`/sd/model-11975.kmodel`。然后,使用`kpu.init_yolo2()`函数初始化YOLO2目标检测任务。参数包括置信度阈值、非极大值抑制阈值、最大检测数量和锚点信息。 之后,代码进入一个无限循环,不断获取传感器的图像并运行目标检测任务。它使用`sensor.snapshot()`函数获取图像,然后使用`kpu.run_yolo2()`函数运行目标检测任务。返回的结果是一个包含检测到的目标信息的列表。 如果检测到目标,则在图像上绘制检测框和标签,并显示目标的类别和置信度值。 最后,代码在图像上显示任务的执行时间,并将图像显示在LCD屏幕上。 如果在加载模型或运行任务的过程中出现异常,则将异常抛出。 最终,在`finally`块中,代码使用`kpu.deinit()`函数释放模型相关的资源。如果任务对象不为空,则调用该函数进行资源释放。

import networkx as nx import matplotlib.pyplot as plt # create graph object G = nx.Graph() # add nodes G.add_node('A') G.add_node('B') G.add_node('C') G.add_node('D') # add edges with weights G.add_edge('A', 'B', weight=5) G.add_edge('A', 'C', weight=7) G.add_edge('B', 'D', weight=6) G.add_edge('C', 'D', weight=3) # define node positions (optional) pos = {'A': (0, 0), 'B': (1, 1), 'C': (-1, 1), 'D': (0, 2)} # draw nodes and edges with labels nx.draw_networkx_nodes(G, pos) nx.draw_networkx_edges(G, pos) nx.draw_networkx_labels(G, pos) edge_labels = nx.get_edge_attributes(G, 'weight') nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) plt.axis('off') plt.show()

这段代码也可以用来绘制带权图,它和我之前给出的示例代码有些不同。以下是这段代码的解释: ```python import networkx as nx import matplotlib.pyplot as plt # 创建一个带权图 G = nx.Graph() # 添加节点 G.add_node('A') G.add_node('B') G.add_node('C') G.add_node('D') # 添加带权边 G.add_edge('A', 'B', weight=5) G.add_edge('A', 'C', weight=7) G.add_edge('B', 'D', weight=6) G.add_edge('C', 'D', weight=3) # 定义节点位置 pos = {'A': (0, 0), 'B': (1, 1), 'C': (-1, 1), 'D': (0, 2)} # 绘制节点和边以及标签 nx.draw_networkx_nodes(G, pos) nx.draw_networkx_edges(G, pos) nx.draw_networkx_labels(G, pos) # 获取边的权重并绘制标签 edge_labels = nx.get_edge_attributes(G, 'weight') nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) plt.axis('off') plt.show() ``` 在这个示例中,我们首先创建了一个带权图,然后添加了节点和带权边。接下来,我们定义了节点位置,这是可选的,如果不定义位置,则networkx会自动为节点排列位置。然后我们使用`nx.draw_networkx_nodes`、`nx.draw_networkx_edges`和`nx.draw_networkx_labels`这三个函数来绘制节点和边,并使用`nx.get_edge_attributes`获取边的权重。最后,我们使用`nx.draw_networkx_edge_labels`函数来绘制边的标签。

相关推荐

最新推荐

recommend-type

【疾病分类】 GUI SVM大脑疾病(脑瘤)和神经疾病(动脉瘤)分类【含Matlab源码 4093期】.zip

【疾病分类】 GUI SVM大脑疾病(脑瘤)和神经疾病(动脉瘤)分类【含Matlab源码 4093期】
recommend-type

【图像边缘检测】小波变换图像边缘检测【含Matlab源码 4142期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

数字舵机控制程序流程图

以下是数字舵机控制程序的流程图: ![数字舵机控制程序流程图](https://i.imgur.com/2fgKUQs.png) 1. 初始化引脚:设置舵机控制引脚为输出模式。 2. 初始化舵机:将舵机控制引脚输出的PWM信号设置为初始值,初始化舵机的位置。 3. 接收控制信号:通过串口或者其他方式接收舵机控制信号。 4. 解析控制信号:解析接收到的控制信号,确定舵机需要转动的角度和方向。 5. 转动舵机:根据解析后的控制信号,设置舵机控制引脚输出的PWM信号的占空比,使舵机转动到目标位置。 6. 延时:为了保证舵机转动到目标位置后稳定,需要延时一段时间。 7. 返回接收控制信