运行pytorch的RNN进行训练的代码
时间: 2023-11-27 16:50:23 浏览: 120
下面是一个使用PyTorch实现的RNN进行训练的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义RNN模型
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(input_size + hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden):
combined = torch.cat((input, hidden), 1)
hidden = self.i2h(combined)
output = self.i2o(combined)
output = self.softmax(output)
return output, hidden
def initHidden(self):
return torch.zeros(1, self.hidden_size)
# 定义训练函数
def train(input_tensor, target_tensor, rnn, criterion, optimizer):
hidden = rnn.initHidden()
optimizer.zero_grad()
loss = 0
for i in range(input_tensor.size(0)):
output, hidden = rnn(input_tensor[i], hidden)
loss += criterion(output, target_tensor[i])
loss.backward()
optimizer.step()
return output, loss.item()
# 定义参数
input_size = 10
hidden_size = 20
output_size = 5
learning_rate = 0.01
num_epochs = 1000
# 初始化模型、损失函数、优化器
rnn = RNN(input_size, hidden_size, output_size)
criterion = nn.NLLLoss()
optimizer = optim.SGD(rnn.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
input_tensor = torch.randn(5, input_size)
target_tensor = torch.LongTensor(5).random_(0, output_size)
output, loss = train(input_tensor, target_tensor, rnn, criterion, optimizer)
if epoch % 100 == 0:
print('Epoch:', epoch, 'Loss:', loss)
```
在这个示例中,我们首先定义了一个简单的RNN模型,然后定义了一个用于训练模型的函数。在训练函数中,我们使用了随机生成的输入张量和目标张量来训练模型。最后,我们使用SGD优化器对模型进行优化,并在每一百个epoch时打印出当前的损失。
阅读全文