实现先来先服务调度算法、短 进程优先调度算法、时间片轮转调度算法和优先级调度算法(抢占式)、高响应 比优先调度算法设计的步骤
时间: 2023-11-03 21:21:56 浏览: 116
这里给出实现先来先服务调度算法、短进程优先调度算法、时间片轮转调度算法和优先级调度算法(抢占式)、高响应比优先调度算法的大致步骤:
1. 首先需要设计进程控制块(PCB)来记录每个进程的信息,如进程ID、进程状态、进程优先级、进程到达时间、进程执行时间等。
2. 实现先来先服务调度算法,按照进程到达时间的先后顺序将进程加入就绪队列,每次从队列头取出一个进程进行执行,直到该进程执行完毕。
3. 实现短进程优先调度算法,将所有进程按照执行时间的长短排序,执行时间短的进程先执行,可以使用插入排序或者堆排序等算法。
4. 实现时间片轮转调度算法,设置一个时间片大小,将所有进程放入就绪队列中,每次从队列头取出一个进程执行固定时间片大小,如果该进程没有执行完,则重新放回队列尾部,等待下一次执行。
5. 实现优先级调度算法(抢占式),将所有进程按照优先级排序,执行优先级高的进程,如果有新的高优先级进程到达,则抢占当前正在执行的进程。
6. 实现高响应比优先调度算法,计算每个进程的响应比,响应比越高的进程先执行,可以使用动态优先级或者静态优先级来计算响应比。
需要注意的是,不同的算法实现可能需要使用不同的数据结构和算法技术,需要根据具体情况进行选择和实现。
相关问题
编程实现:先来先服务调度算法、短 进程优先调度算法、时间片轮转调度算法和优先级调度算法(抢占式)、高响应 比优先调度算法。
先来先服务调度算法(FCFS):
```python
def fcfs(processes):
"""
First-Come, First-Served (FCFS) scheduling algorithm
Input:
processes: a list of dictionaries containing process information
Each dictionary should have the following keys:
- 'pid': process ID
- 'arrival_time': arrival time of the process
- 'burst_time': burst time of the process
Output:
a list of tuples containing the order in which the processes are executed
Each tuple should have the following format:
(process ID, start time, end time)
"""
# Sort the processes by arrival time
sorted_processes = sorted(processes, key=lambda x: x['arrival_time'])
# Initialize the start and end times of the first process
start_time = sorted_processes[0]['arrival_time']
end_time = start_time + sorted_processes[0]['burst_time']
# Initialize the order list with the first process
order = [(sorted_processes[0]['pid'], start_time, end_time)]
# Loop through the remaining processes and update the start and end times
for i in range(1, len(sorted_processes)):
if sorted_processes[i]['arrival_time'] > end_time:
# If there is a gap between processes, update the start time
start_time = sorted_processes[i]['arrival_time']
else:
# If the next process arrives before the current process finishes,
# update the end time
start_time = end_time
end_time = start_time + sorted_processes[i]['burst_time']
# Add the process to the order list
order.append((sorted_processes[i]['pid'], start_time, end_time))
return order
```
短进程优先调度算法(SJF):
```python
def sjf(processes):
"""
Shortest-Job-First (SJF) scheduling algorithm
Input:
processes: a list of dictionaries containing process information
Each dictionary should have the following keys:
- 'pid': process ID
- 'arrival_time': arrival time of the process
- 'burst_time': burst time of the process
Output:
a list of tuples containing the order in which the processes are executed
Each tuple should have the following format:
(process ID, start time, end time)
"""
# Sort the processes by arrival time and burst time
sorted_processes = sorted(processes, key=lambda x: (x['arrival_time'], x['burst_time']))
# Initialize the start and end times of the first process
start_time = sorted_processes[0]['arrival_time']
end_time = start_time + sorted_processes[0]['burst_time']
# Initialize the order list with the first process
order = [(sorted_processes[0]['pid'], start_time, end_time)]
# Loop through the remaining processes and update the start and end times
for i in range(1, len(sorted_processes)):
if sorted_processes[i]['arrival_time'] > end_time:
# If there is a gap between processes, update the start time
start_time = sorted_processes[i]['arrival_time']
else:
# If the next process arrives before the current process finishes,
# update the end time
start_time = end_time
end_time = start_time + sorted_processes[i]['burst_time']
# Add the process to the order list
order.append((sorted_processes[i]['pid'], start_time, end_time))
return order
```
时间片轮转调度算法(RR):
```python
def rr(processes, quantum):
"""
Round-Robin (RR) scheduling algorithm
Input:
processes: a list of dictionaries containing process information
Each dictionary should have the following keys:
- 'pid': process ID
- 'arrival_time': arrival time of the process
- 'burst_time': burst time of the process
quantum: the time quantum for the algorithm
Output:
a list of tuples containing the order in which the processes are executed
Each tuple should have the following format:
(process ID, start time, end time)
"""
# Sort the processes by arrival time
sorted_processes = sorted(processes, key=lambda x: x['arrival_time'])
# Initialize the start and end times of the first process
start_time = sorted_processes[0]['arrival_time']
end_time = min(start_time + sorted_processes[0]['burst_time'], sorted_processes[1]['arrival_time']) if len(sorted_processes) > 1 else start_time + sorted_processes[0]['burst_time']
# Initialize the order list with the first process
order = [(sorted_processes[0]['pid'], start_time, end_time)]
# Initialize the queue with the remaining processes
queue = sorted_processes[1:]
# Loop through the queue until all processes are executed
while queue:
# Get the next process in the queue
current_process = queue.pop(0)
# If the process has not arrived yet, skip it
if current_process['arrival_time'] > end_time:
queue.append(current_process)
continue
# Calculate the remaining burst time for the current process
remaining_time = current_process['burst_time']
start_time = end_time
# Loop through the time slices until the process finishes
while remaining_time > 0:
# If the time slice is smaller than the remaining time, update the end time
if remaining_time > quantum:
end_time = start_time + quantum
remaining_time -= quantum
else:
end_time = start_time + remaining_time
remaining_time = 0
# Add the process to the order list
order.append((current_process['pid'], start_time, end_time))
# Update the start time for the next time slice
start_time = end_time
# Check if there are any new processes that have arrived
for process in queue:
if process['arrival_time'] <= end_time:
queue.remove(process)
queue.append(current_process)
current_process = process
remaining_time = current_process['burst_time']
break
return order
```
优先级调度算法(抢占式):
```python
def priority_preemptive(processes):
"""
Priority scheduling algorithm (preemptive)
Input:
processes: a list of dictionaries containing process information
Each dictionary should have the following keys:
- 'pid': process ID
- 'arrival_time': arrival time of the process
- 'burst_time': burst time of the process
- 'priority': priority of the process (higher number = higher priority)
Output:
a list of tuples containing the order in which the processes are executed
Each tuple should have the following format:
(process ID, start time, end time)
"""
# Sort the processes by arrival time and priority
sorted_processes = sorted(processes, key=lambda x: (x['arrival_time'], -x['priority']))
# Initialize the start and end times of the first process
start_time = sorted_processes[0]['arrival_time']
end_time = start_time + sorted_processes[0]['burst_time']
# Initialize the order list with the first process
order = [(sorted_processes[0]['pid'], start_time, end_time)]
# Initialize the queue with the remaining processes
queue = sorted_processes[1:]
# Loop through the queue until all processes are executed
while queue:
# Get the highest-priority process in the queue
current_process = max(queue, key=lambda x: x['priority'])
# If the process has not arrived yet, skip it
if current_process['arrival_time'] > end_time:
queue.remove(current_process)
continue
# Calculate the remaining burst time for the current process
remaining_time = current_process['burst_time']
start_time = end_time
# Loop through the remaining processes to check if there is a higher-priority process
for process in queue:
if process['arrival_time'] <= end_time and process['priority'] > current_process['priority']:
# If there is a higher-priority process, preempt the current process
queue.remove(process)
queue.append(current_process)
current_process = process
remaining_time = current_process['burst_time']
break
# Loop through the time slices until the process finishes
while remaining_time > 0:
# If the next process has a higher priority, preempt the current process
if queue and max(queue, key=lambda x: x['priority'])['priority'] > current_process['priority']:
break
# If the time slice is smaller than the remaining time, update the end time
if remaining_time > 1:
end_time += 1
remaining_time -= 1
else:
end_time += 1
remaining_time = 0
# Add the process to the order list
order.append((current_process['pid'], start_time, end_time))
return order
```
高响应比优先调度算法:
```python
def hrrn(processes):
"""
Highest-Response-Ratio-Next (HRRN) scheduling algorithm
Input:
processes: a list of dictionaries containing process information
Each dictionary should have the following keys:
- 'pid': process ID
- 'arrival_time': arrival time of the process
- 'burst_time': burst time of the process
Output:
a list of tuples containing the order in which the processes are executed
Each tuple should have the following format:
(process ID, start time, end time)
"""
# Sort the processes by arrival time
sorted_processes = sorted(processes, key=lambda x: x['arrival_time'])
# Initialize the start and end times of the first process
start_time = sorted_processes[0]['arrival_time']
end_time = start_time + sorted_processes[0]['burst_time']
# Initialize the order list with the first process
order = [(sorted_processes[0]['pid'], start_time, end_time)]
# Initialize the queue with the remaining processes
queue = sorted_processes[1:]
# Loop through the queue until all processes are executed
while queue:
# Calculate the response ratio for each process in the queue
response_ratios = []
for process in queue:
wait_time = max(0, end_time - process['arrival_time'])
response_ratio = (wait_time + process['burst_time']) / process['burst_time']
response_ratios.append(response_ratio)
# Get the process with the highest response ratio
index = response_ratios.index(max(response_ratios))
current_process = queue.pop(index)
# Calculate the remaining burst time for the current process
remaining_time = current_process['burst_time']
start_time = end_time
# Loop through the time slices until the process finishes
while remaining_time > 0:
# If the next process has a higher response ratio, preempt the current process
response_ratios = []
for process in queue:
wait_time = max(0, end_time - process['arrival_time'])
response_ratio = (wait_time + process['burst_time']) / process['burst_time']
response_ratios.append(response_ratio)
if queue and max(response_ratios) > ((end_time - current_process['arrival_time']) / current_process['burst_time']):
break
# If the time slice is smaller than the remaining time, update the end time
if remaining_time > 1:
end_time += 1
remaining_time -= 1
else:
end_time += 1
remaining_time = 0
# Add the process to the order list
order.append((current_process['pid'], start_time, end_time))
return order
```
用c++综合实现:先来先服务调度算法、短 进程优先调度算法、时间片轮转调度算法和优先级调度算法(抢占式)、高响应 比优先调度算法。
以下是用 C++ 综合实现先来先服务调度算法、短进程优先调度算法、时间片轮转调度算法和优先级调度算法(抢占式)、高响应比优先调度算法的示例代码。
先来先服务调度算法:
```cpp
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
int id;
int arriveTime;
int serveTime;
int startTime;
int waitTime;
int finishTime;
bool operator < (const node &b) const{
return arriveTime<b.arriveTime;
}
}a[1005];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i].arriveTime>>a[i].serveTime;
a[i].id=i;
}
sort(a+1,a+n+1);
a[1].startTime=a[1].arriveTime;
a[1].finishTime=a[1].startTime+a[1].serveTime;
a[1].waitTime=0;
for(int i=2;i<=n;i++){
if(a[i].arriveTime<=a[i-1].finishTime){
a[i].startTime=a[i-1].finishTime;
}
else{
a[i].startTime=a[i].arriveTime;
}
a[i].finishTime=a[i].startTime+a[i].serveTime;
a[i].waitTime=a[i].startTime-a[i].arriveTime;
}
for(int i=1;i<=n;i++){
cout<<"Process "<<a[i].id<<":\n";
cout<<"Start time: "<<a[i].startTime<<endl;
cout<<"Finish time: "<<a[i].finishTime<<endl;
cout<<"Wait time: "<<a[i].waitTime<<endl;
cout<<endl;
}
return 0;
}
```
短进程优先调度算法:
```cpp
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
int id;
int arriveTime;
int serveTime;
int startTime;
int waitTime;
int finishTime;
bool operator < (const node &b) const{
if(arriveTime!=b.arriveTime){
return arriveTime<b.arriveTime;
}
else{
return serveTime<b.serveTime;
}
}
}a[1005];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i].arriveTime>>a[i].serveTime;
a[i].id=i;
}
sort(a+1,a+n+1);
a[1].startTime=a[1].arriveTime;
a[1].finishTime=a[1].startTime+a[1].serveTime;
a[1].waitTime=0;
for(int i=2;i<=n;i++){
int pos=i;
for(int j=i-1;j>=1;j--){
if(a[j].finishTime<=a[i].arriveTime){
break;
}
if(a[j].serveTime<a[pos].serveTime){
pos=j;
}
}
swap(a[i],a[pos]);
if(a[i].arriveTime<=a[i-1].finishTime){
a[i].startTime=a[i-1].finishTime;
}
else{
a[i].startTime=a[i].arriveTime;
}
a[i].finishTime=a[i].startTime+a[i].serveTime;
a[i].waitTime=a[i].startTime-a[i].arriveTime;
}
for(int i=1;i<=n;i++){
cout<<"Process "<<a[i].id<<":\n";
cout<<"Start time: "<<a[i].startTime<<endl;
cout<<"Finish time: "<<a[i].finishTime<<endl;
cout<<"Wait time: "<<a[i].waitTime<<endl;
cout<<endl;
}
return 0;
}
```
时间片轮转调度算法:
```cpp
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
struct node{
int id;
int arriveTime;
int serveTime;
int startTime;
int waitTime;
int finishTime;
int leftTime;
bool operator < (const node &b) const{
if(arriveTime!=b.arriveTime){
return arriveTime<b.arriveTime;
}
else{
return serveTime<b.serveTime;
}
}
}a[1005];
queue<node> q;
int main(){
int n,timeSlice;
cin>>n>>timeSlice;
for(int i=1;i<=n;i++){
cin>>a[i].arriveTime>>a[i].serveTime;
a[i].id=i;
a[i].leftTime=a[i].serveTime;
}
sort(a+1,a+n+1);
a[1].startTime=a[1].arriveTime;
a[1].finishTime=a[1].startTime+min(a[1].leftTime,timeSlice);
a[1].waitTime=a[1].startTime-a[1].arriveTime;
if(a[1].leftTime<=timeSlice){
a[1].leftTime=0;
}
else{
a[1].leftTime-=timeSlice;
q.push(a[1]);
}
int currentTime=a[1].finishTime;
int cnt=1;
while(!q.empty()||cnt<n){
while(cnt<n&&a[cnt+1].arriveTime<=currentTime){
cnt++;
q.push(a[cnt]);
}
if(q.empty()){
cnt++;
q.push(a[cnt]);
currentTime=a[cnt].arriveTime;
}
node tmp=q.front();
q.pop();
tmp.startTime=currentTime;
tmp.finishTime=currentTime+min(tmp.leftTime,timeSlice);
tmp.waitTime=tmp.startTime-tmp.arriveTime;
currentTime=tmp.finishTime;
if(tmp.leftTime<=timeSlice){
tmp.leftTime=0;
}
else{
tmp.leftTime-=timeSlice;
q.push(tmp);
}
a[tmp.id]=tmp;
}
for(int i=1;i<=n;i++){
cout<<"Process "<<a[i].id<<":\n";
cout<<"Start time: "<<a[i].startTime<<endl;
cout<<"Finish time: "<<a[i].finishTime<<endl;
cout<<"Wait time: "<<a[i].waitTime<<endl;
cout<<endl;
}
return 0;
}
```
优先级调度算法(抢占式):
```cpp
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
struct node{
int id;
int arriveTime;
int serveTime;
int startTime;
int waitTime;
int finishTime;
int priority;
bool operator < (const node &b) const{
if(arriveTime!=b.arriveTime){
return arriveTime<b.arriveTime;
}
else{
return priority<b.priority;
}
}
}a[1005];
struct cmp{
bool operator () (node x,node y) const{
return x.priority<y.priority;
}
};
priority_queue<node,vector<node>,cmp> q;
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i].arriveTime>>a[i].serveTime>>a[i].priority;
a[i].id=i;
}
sort(a+1,a+n+1);
a[1].startTime=a[1].arriveTime;
a[1].finishTime=a[1].startTime+a[1].serveTime;
a[1].waitTime=a[1].startTime-a[1].arriveTime;
for(int i=2;i<=n;i++){
if(a[i].arriveTime<=a[i-1].finishTime){
a[i].startTime=a[i-1].finishTime;
}
else{
a[i].startTime=a[i].arriveTime;
}
a[i].finishTime=a[i].startTime+a[i].serveTime;
a[i].waitTime=a[i].startTime-a[i].arriveTime;
}
int currentTime=a[1].finishTime;
int cnt=1;
while(!q.empty()||cnt<n){
while(cnt<n&&a[cnt+1].arriveTime<=currentTime){
cnt++;
q.push(a[cnt]);
}
if(q.empty()){
cnt++;
q.push(a[cnt]);
currentTime=a[cnt].arriveTime;
}
node tmp=q.top();
q.pop();
tmp.startTime=currentTime;
tmp.finishTime=currentTime+tmp.serveTime;
tmp.waitTime=tmp.startTime-tmp.arriveTime;
currentTime=tmp.finishTime;
a[tmp.id]=tmp;
}
for(int i=1;i<=n;i++){
cout<<"Process "<<a[i].id<<":\n";
cout<<"Start time: "<<a[i].startTime<<endl;
cout<<"Finish time: "<<a[i].finishTime<<endl;
cout<<"Wait time: "<<a[i].waitTime<<endl;
cout<<endl;
}
return 0;
}
```
高响应比优先调度算法:
```cpp
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
struct node{
int id;
int arriveTime;
int serveTime;
int startTime;
int waitTime;
int finishTime;
int priority;
double ratio;
bool operator < (const node &b) const{
if(arriveTime!=b.arriveTime){
return arriveTime<b.arriveTime;
}
else{
return ratio<b.ratio;
}
}
}a[1005];
struct cmp{
bool operator () (node x,node y) const{
return x.priority<y.priority;
}
};
priority_queue<node,vector<node>,cmp> q;
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i].arriveTime>>a[i].serveTime>>a[i].priority;
a[i].id=i;
a[i].ratio=1.0*a[i].serveTime/a[i].waitTime;
}
sort(a+1,a+n+1);
a[1].startTime=a[1].arriveTime;
a[1].finishTime=a[1].startTime+a[1].serveTime;
a[1].waitTime=a[1].startTime-a[1].arriveTime;
for(int i=2;i<=n;i++){
if(a[i].arriveTime<=a[i-1].finishTime){
a[i].startTime=a[i-1].finishTime;
}
else{
a[i].startTime=a[i].arriveTime;
}
a[i].finishTime=a[i].startTime+a[i].serveTime;
a[i].waitTime=a[i].startTime-a[i].arriveTime;
}
int currentTime=a[1].finishTime;
int cnt=1;
while(!q.empty()||cnt<n){
while(cnt<n&&a[cnt+1].arriveTime<=currentTime){
cnt++;
a[cnt].waitTime=currentTime-a[cnt].arriveTime;
a[cnt].ratio=1.0*a[cnt].serveTime/a[cnt].waitTime;
q.push(a[cnt]);
}
if(q.empty()){
cnt++;
a[cnt].waitTime=0;
a[cnt].ratio=1.0*a[cnt].serveTime;
q.push(a[cnt]);
currentTime=a[cnt].arriveTime;
}
node tmp=q.top();
q.pop();
tmp.startTime=currentTime;
tmp.finishTime=currentTime+tmp.serveTime;
tmp.waitTime=tmp.startTime-tmp.arriveTime;
currentTime=tmp.finishTime;
a[tmp.id]=tmp;
}
for(int i=1;i<=n;i++){
cout<<"Process "<<a[i].id<<":\n";
cout<<"Start time: "<<a[i].startTime<<endl;
cout<<"Finish time: "<<a[i].finishTime<<endl;
cout<<"Wait time: "<<a[i].waitTime<<endl;
cout<<endl;
}
return 0;
}
```
阅读全文
相关推荐
![txt](https://img-home.csdnimg.cn/images/20241231045021.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![txt](https://img-home.csdnimg.cn/images/20241231045021.png)
![-](https://img-home.csdnimg.cn/images/20241231044833.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)