多元lstm时间序列预测python
时间: 2024-12-07 13:07:17 浏览: 19
基于LSTM模型实现多元多步时间序列预测python源码+数据集(学霸毕业设计高分项目).zip
5星 · 资源好评率100%
多元LSTM(Long Short-Term Memory)时间序列预测通常用于处理涉及多个输入变量的复杂序列数据,比如金融市场的股票价格、天气数据等。在Python中,我们可以使用深度学习库Keras或TensorFlow库来实现。
首先,你需要安装必要的库:
```bash
pip install tensorflow numpy pandas keras scikit-learn
```
以下是使用Keras构建一个简单多元LSTM模型的基本步骤:
1. 导入所需的库:
```python
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
```
2. 准备数据(假设你有一个包含多个列的时间序列DataFrame `df`):
```python
def create_dataset(data, look_back=1):
data = data.values
X, y = [], []
for i in range(len(data) - look_back - 1):
a = data[i:(i + look_back), :]
X.append(a)
y.append(data[i + look_back, 0]) # 仅针对一维预测,如果有多维度,替换为相应的列索引
return np.array(X), np.array(y)
# 数据预处理
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(df)
X_train, y_train = create_dataset(data_scaled)
```
3. 构建LSTM模型:
```python
model = Sequential([
LSTM(50, input_shape=(look_back, df.shape[1]), return_sequences=True),
Dropout(0.2),
LSTM(50),
Dropout(0.2),
Dense(1)
])
```
4. 编译并训练模型:
```python
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(X_train, y_train, epochs=100, batch_size=64)
```
5. 预测新的时间序列点:
```python
look_ahead = 1 # 预测的步数
X_test = []
for i in range(len(data_scaled) - look_back - look_ahead + 1):
a = data_scaled[i:(i + look_back), :]
X_test.append(a)
X_test = np.array(X_test)
predictions = model.predict(X_test)
```
阅读全文