stm32f4 神经网络
时间: 2023-10-28 14:26:34 浏览: 154
对于STM32F4上的神经网络,可以采取以下步骤:
1. 首先,在MATLAB中使用训练数据来训练神经网络模型,并导出相应的参数。使用MATLAB的神经网络工具箱,可以构建并训练神经网络模型。在训练过程中,可以设置训练参数和目标误差,以获得更好的训练效果。
2. 将导出的神经网络参数移植到STM32F4上的代码中。通过将训练得到的权重和偏置值导入到STM32F4的代码中,可以实现神经网络的计算功能。在STM32F4上,可以使用DSP库来进行矩阵乘法运算,并使用激活函数(如tansig)来计算输出结果。
3. 在STM32F4的代码中,确保已开启FPU(浮点运算单元)并添加了相应的头文件(如arm_math.h)。这样可以确保在神经网络计算过程中使用了硬件加速,提高了计算效率。
通过以上步骤,可以在STM32F4上实现神经网络的计算功能。这将使您能够使用STM32F4微控制器进行实时的神经网络计算。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [神经网络移植到STM32F4上的应用 可以训练识别手势](https://blog.csdn.net/qingelife/article/details/78429508)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatgptT3_2"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
阅读全文