尝试解释下面的代码images = [os.path.join(cla_path, i) for i in os.listdir(cla_path) if os.path.splitext(i)[-1] in images_format]

时间: 2024-05-28 08:13:14 浏览: 93
这段代码使用了列表推导式(list comprehension),用于获取指定路径下特定格式的图片文件的绝对路径。 具体来说,代码中的 `os.listdir(cla_path)` 返回指定目录 `cla_path` 中所有文件和子目录的名称列表。然后通过循环遍历该列表,使用 `os.path.join()` 函数将 `cla_path` 和每个文件名拼接起来,得到文件的绝对路径。同时,使用 `os.path.splitext(i)[-1]` 获取文件名的扩展名,并判断是否为指定的图片格式(`images_format` 变量),如果是,则将该文件的绝对路径加入到列表 `images` 中。 因此,最终 `images` 列表中存储的是指定目录中所有符合要求的图片文件的绝对路径。
相关问题

试着解释下下面的代码images = [os.path.join(cla_path, i) for i in os.listdir(cla_path) if os.path.splitext(i)[-1] in images_format]

这段代码是用来获取指定路径下的所有特定格式的图片文件名列表的。具体来说,它使用了 Python 中的 os 模块来操作文件系统,包括列出目录中的所有文件和子目录,获取文件名和扩展名等等。代码中的 cla_path 是指定的路径,而 images_format 是一个包含允许的图片格式的列表,如 [".jpg", ".jpeg", ".png"]。代码首先使用 os.listdir(cla_path) 来列出 cla_path 目录下的所有文件和子目录,然后使用列表推导式 (list comprehension) 来筛选出所有符合条件的图片文件名,最终将它们存储在 images 列表中。其中,os.path.splitext(i)[-1] 用来获取文件名 i 的扩展名,如果它在 images_format 中,就说明这个文件是一张图片文件。

flower_class = [cla for cla in os.listdir(origin_flower_path) if os.path.isdir(os.path.join(origin_flower_path, cla))]解释这段python代码

这段 Python 代码是用来获取指定路径下的所有文件夹名称,并将这些名称存储在一个列表中。具体来说,代码首先使用 os.listdir() 函数获取指定路径下的所有文件和文件夹名称,然后使用 os.path.isdir() 函数判断每个名称是否为文件夹,如果是,则将其添加到列表中。最终,这个列表包含了指定路径下所有文件夹的名称。
阅读全文

相关推荐

给下面这段代码每行注释import os import json import torch from PIL import Image from torchvision import transforms from model import resnet34 def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image # 指向需要遍历预测的图像文件夹 imgs_root = "../dataset/val" assert os.path.exists(imgs_root), f"file: '{imgs_root}' dose not exist." # 读取指定文件夹下所有jpg图像路径 img_path_list = [os.path.join(imgs_root, i) for i in os.listdir(imgs_root) if i.endswith(".jpg")] # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), f"file: '{json_path}' dose not exist." json_file = open(json_path, "r") class_indict = json.load(json_file) # create model model = resnet34(num_classes=16).to(device) # load model weights weights_path = "./newresNet34.pth" assert os.path.exists(weights_path), f"file: '{weights_path}' dose not exist." model.load_state_dict(torch.load(weights_path, map_location=device)) # prediction model.eval() batch_size = 8 # 每次预测时将多少张图片打包成一个batch with torch.no_grad(): for ids in range(0, len(img_path_list) // batch_size): img_list = [] for img_path in img_path_list[ids * batch_size: (ids + 1) * batch_size]: assert os.path.exists(img_path), f"file: '{img_path}' dose not exist." img = Image.open(img_path) img = data_transform(img) img_list.append(img) # batch img # 将img_list列表中的所有图像打包成一个batch batch_img = torch.stack(img_list, dim=0) # predict class output = model(batch_img.to(device)).cpu() predict = torch.softmax(output, dim=1) probs, classes = torch.max(predict, dim=1) for idx, (pro, cla) in enumerate(zip(probs, classes)): print("image: {} class: {} prob: {:.3}".format(img_path_list[ids * batch_size + idx], class_indict[str(cla.numpy())], pro.numpy())) if __name__ == '__main__': main()

这是对单个文件进行预测“import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from model import convnext_tiny as create_model def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"using {device} device.") num_classes = 5 img_size = 224 data_transform = transforms.Compose( [transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image img_path = "../tulip.jpg" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model_weight_path = "./weights/best_model.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.title(print_res) for i in range(len(predict)): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], predict[i].numpy())) plt.show() if __name__ == '__main__': main()”,改为对指定文件夹下的左右文件进行预测,并绘制混淆矩阵

import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt from torch import autograd """ 用神经网络模拟微分方程,f(x)'=f(x),初始条件f(0) = 1 """ class Net(nn.Module): def __init__(self, NL, NN): # NL n个l(线性,全连接)隐藏层, NN 输入数据的维数, # NL是有多少层隐藏层 # NN是每层的神经元数量 super(Net, self).__init__() self.input_layer = nn.Linear(1, NN) self.hidden_layer = nn.Linear(NN,int(NN/2)) ## 原文这里用NN,我这里用的下采样,经过实验验证,“等采样”更优。更多情况有待我实验验证。 self.output_layer = nn.Linear(int(NN/2), 1) def forward(self, x): out = torch.tanh(self.input_layer(x)) out = torch.tanh(self.hidden_layer(out)) out_final = self.output_layer(out) return out_final net=Net(4,20) # 4层 20个 mse_cost_function = torch.nn.MSELoss(reduction='mean') # Mean squared error 均方误差求 optimizer = torch.optim.Adam(net.parameters(),lr=1e-4) # 优化器 def ode_01(x,net): y=net(x) y_x = autograd.grad(y, x,grad_outputs=torch.ones_like(net(x)),create_graph=True)[0] return y-y_x # y-y' = 0 # requires_grad=True).unsqueeze(-1) plt.ion() # 动态图 iterations=200000 for epoch in range(iterations): optimizer.zero_grad() # 梯度归0 ## 求边界条件的损失函数 x_0 = torch.zeros(2000, 1) y_0 = net(x_0) mse_i = mse_cost_function(y_0, torch.ones(2000, 1)) # f(0) - 1 = 0 ## 方程的损失函数 x_in = np.random.uniform(low=0.0, high=2.0, size=(2000, 1)) pt_x_in = autograd.Variable(torch.from_numpy(x_in).float(), requires_grad=True) # x 随机数 pt_y_colection=ode_01(pt_x_in,net) pt_all_zeros= autograd.Variable(torch.from_numpy(np.zeros((2000,1))).float(), requires_grad=False) mse_f=mse_cost_function(pt_y_colection, pt_all_zeros) # y-y' = 0 loss = mse_i + mse_f loss.backward() # 反向传播 optimizer.step() # 优化下一步。This is equivalent to : theta_new = theta_old - alpha * derivative of J w.r.t theta if epoch%1000==0: y = torch.exp(pt_x_in) # y 真实值 y_train0 = net(pt_x_in) # y 预测值 print(epoch, "Traning Loss:", loss.data) print(f'times {epoch} - loss: {loss.item()} - y_0: {y_0}') plt.cla() plt.scatter(pt_x_in.detach().numpy(), y.detach().numpy()) plt.scatter(pt_x_in.detach().numpy(), y_train0.detach().numpy(),c='red') plt.pause(0.1)

运行这段代码出现TypeError: '<' not supported between instances of 'datetime.date' and 'int'错误csp_info.replace(to_replace=r'^\s*$', value=np.nan, regex=True, inplace=True) csp_info.dropna(inplace=True) csp_info['year'] = csp_info['DealTime'].str.split('/', expand=True)[0] csp_info['month'] = csp_info['DealTime'].str.split('/', expand=True)[1] csp_info['day'] = csp_info['DealTime'].str.split('/', expand=True)[2].str.split(' ', expand=True)[0] stu_info_copy = stu_info[['bf_StudentID','cla_id']] # csp_info_copy = csp_info.copy() csp_info['csp_date'] = 0 csp_info['Mon'] = 0 for i in range(csp_info['csp_date'].shape[0]): csp_info['csp_date'].iloc[i] = str(csp_info['year'].iloc[i]) + '-' + str(csp_info['month'].iloc[i]) + '-' + str( csp_info['day'].iloc[i]) csp_info['Mon'].iloc[i] = float(str(csp_info['MonDeal'].iloc[i]).split('-')[1]) # print(csp_info) csp_info['csp_date'] = pd.to_datetime(csp_info['csp_date']).dt.date csp_info_copy = csp_info[['bf_StudentID', 'csp_date', 'Mon']] csp_num = csp_info_copy.groupby(['csp_date']).count().reset_index() csp_info_date_all = [] for i in range(csp_num.shape[0]): csp_info_date_all.append(str(csp_num['csp_date'].iloc[i])) print(len(csp_info_date_all)) stu_info_copy_merge = pd.merge(stu_info_copy, csp_info_copy, on='bf_StudentID', how='left') stu_info_copy_merge = stu_info_copy_merge.fillna(0) Mon_arr = [] for i in range(len(classId)): stu_info_copy_merge_id = stu_info_copy_merge.drop(stu_info_copy_merge[stu_info_copy_merge['cla_id'] != classId[i]].index) print(stu_info_copy_merge_id) csp_date = [] Mon= [] Num= [] csp_money = stu_info_copy_merge_id[['csp_date', 'Mon']].groupby('csp_date').sum().reset_index() csp_num = stu_info_copy_merge_id[['csp_date','Mon']].groupby('csp_date').count().reset_index() print(csp_money) print(csp_num)

大家在看

recommend-type

X-Projects:使用 Redmine 和 Excel 的 CCPM(关键链项目管理)工具

使用 CCPM 的 X 项目 使用 Redmine 和 Excel 的 CCPM(关键链项目管理)工具 特点 特点 将在 Excel 中创建的票证信息集中注册/更新到 Redmine 考虑到节假日,从售票负责人和工时计算开始日期和截止日期 按任务可能完成的小时数输入进度登记 通过每个负责人的进度状态和整体进度过渡图查看进度 CCPM燃尽图、缓冲区管理图显示 用法 在工单批量创建表中输入编号、标题、费用和计划工时 按日期重新计算按钮计算开始日期和截止日期 单击 CSV 创建按钮将创建的 CSV 导入 Redmine 开发人员根据还剩多少小时来修复计划的工时 检查进度时的CSV导出票并将其粘贴到Excel中 按日期重新计算按负责人更新进度和进度图 有关详细信息,请参阅和 X-Projects.xls 是一个输入进度率的版本,它不是 v0.3.1 CCPM 要求 红米 Redmine 导入器插件
recommend-type

CMW500 LTE 信令测试方法

文档介绍如何使用CWM500测试LTE信号的各项指标,里面包含3GPP协议对于指标的要求,非常实用,
recommend-type

多点路径规划matlab代码-FillFactorEstimatorForConstructionVehicles:FillFactorEst

多点路径规划指标FillFactorEstimatorFor ConstructionVehicles 结果可视化 图1:容量估算和存储桶检测 图2:输入描述 提交给“用于工程车辆的填充因子估计和铲斗检测的基于神经网络的方法”论文的数据集和源代码已提交给 抽象的 铲斗填充系数对于测量工程车辆的生产率至关重要,这是一次铲斗中铲斗中装载的物料的百分比。 另外,铲斗的位置信息对于铲斗轨迹规划也是必不可少的。 已经进行了一些研究,以通过最先进的计算机视觉方法对其进行测量,但是未考虑应用系统对各种环境条件的鲁棒性。 在这项研究中,我们旨在填补这一空白,并包括六个独特的环境设置。 图像由立体相机捕获,并用于生成点云,然后再构建为3D地图。 最初提出了这种新颖的深度学习预处理管道,并且该可行性已通过本研究验证。 此外,采用多任务学习(MTL)来开发两个任务之间的正相关关系:填充因子预测和存储桶检测。 因此,经过预处理后,将3D映射转发到带有改进的残差神经网络(ResNet)的卷积神经网络(Faster R-CNN)的更快区域。 填充因子的值是通过分类和基于概率的方法获得的,这是新颖的,并且可以实现启
recommend-type

Mud Pulse Telemetry Signal Decoding Manual

泥浆脉冲遥传信号编码技术手册
recommend-type

《程序设计基础》历年试题及答案.pdf

吉林大学计算机软件学院的历年期末试题,带答案的,可以参考,祝你高分

最新推荐

recommend-type

解决python中显示图片的plt.imshow plt.show()内存泄漏问题

for image in images: plt.figure(figsize=IMAGE_SIZE) plt.imshow(image) plt.show() plt.close() ``` 2. **使用`clf()`或`clear()`**:在显示下一张图片前,可以调用`plt.clf()`(clear figure)或`plt.gca()...
recommend-type

java.lang.NoClassDefFoundError错误解决办法

下面是该错误的解决办法: 错误原因 NoClassDefFoundError错误的发生,是因为Java虚拟机在编译时能找到合适的类,而在运行时不能找到合适的类导致的错误。例如在运行时我们想调用某个类的方法或者访问这个类的静态...
recommend-type

技术运维-机房巡检表及巡检说明

技术运维-机房巡检表及巡检说明
recommend-type

第四次算法分析与设计整理

第四次算法分析与设计整理
recommend-type

虚拟串口软件:实现IP信号到虚拟串口的转换

在IT行业,虚拟串口技术是模拟物理串行端口的一种软件解决方案。虚拟串口允许在不使用实体串口硬件的情况下,通过计算机上的软件来模拟串行端口,实现数据的发送和接收。这对于使用基于串行通信的旧硬件设备或者在系统中需要更多串口而硬件资源有限的情况特别有用。 虚拟串口软件的作用机制是创建一个虚拟设备,在操作系统中表现得如同实际存在的硬件串口一样。这样,用户可以通过虚拟串口与其它应用程序交互,就像使用物理串口一样。虚拟串口软件通常用于以下场景: 1. 对于使用老式串行接口设备的用户来说,若计算机上没有相应的硬件串口,可以借助虚拟串口软件来与这些设备进行通信。 2. 在开发和测试中,开发者可能需要模拟多个串口,以便在没有真实硬件串口的情况下进行软件调试。 3. 在虚拟机环境中,实体串口可能不可用或难以配置,虚拟串口则可以提供一个无缝的串行通信途径。 4. 通过虚拟串口软件,可以在计算机网络中实现串口设备的远程访问,允许用户通过局域网或互联网进行数据交换。 虚拟串口软件一般包含以下几个关键功能: - 创建虚拟串口对,用户可以指定任意数量的虚拟串口,每个虚拟串口都有自己的参数设置,比如波特率、数据位、停止位和校验位等。 - 捕获和记录串口通信数据,这对于故障诊断和数据记录非常有用。 - 实现虚拟串口之间的数据转发,允许将数据从一个虚拟串口发送到另一个虚拟串口或者实际的物理串口,反之亦然。 - 集成到操作系统中,许多虚拟串口软件能被集成到操作系统的设备管理器中,提供与物理串口相同的用户体验。 关于标题中提到的“无毒附说明”,这是指虚拟串口软件不含有恶意软件,不含有病毒、木马等可能对用户计算机安全造成威胁的代码。说明文档通常会详细介绍软件的安装、配置和使用方法,确保用户可以安全且正确地操作。 由于提供的【压缩包子文件的文件名称列表】为“虚拟串口”,这可能意味着在进行虚拟串口操作时,相关软件需要对文件进行操作,可能涉及到的文件类型包括但不限于配置文件、日志文件以及可能用于数据保存的文件。这些文件对于软件来说是其正常工作的重要组成部分。 总结来说,虚拟串口软件为计算机系统提供了在软件层面模拟物理串口的功能,从而扩展了串口通信的可能性,尤其在缺少物理串口或者需要实现串口远程通信的场景中。虚拟串口软件的设计和使用,体现了IT行业为了适应和解决实际问题所创造的先进技术解决方案。在使用这类软件时,用户应确保软件来源的可靠性和安全性,以防止潜在的系统安全风险。同时,根据软件的使用说明进行正确配置,确保虚拟串口的正确应用和数据传输的安全。
recommend-type

【Python进阶篇】:掌握这些高级特性,让你的编程能力飞跃提升

# 摘要 Python作为一种高级编程语言,在数据处理、分析和机器学习等领域中扮演着重要角色。本文从Python的高级特性入手,深入探讨了面向对象编程、函数式编程技巧、并发编程以及性能优化等多个方面。特别强调了类的高级用法、迭代器与生成器、装饰器、高阶函数的运用,以及并发编程中的多线程、多进程和异步处理模型。文章还分析了性能优化技术,包括性能分析工具的使用、内存管理与垃圾回收优
recommend-type

后端调用ragflow api

### 如何在后端调用 RAGFlow API RAGFlow 是一种高度可配置的工作流框架,支持从简单的个人应用扩展到复杂的超大型企业生态系统的场景[^2]。其提供了丰富的功能模块,包括多路召回、融合重排序等功能,并通过易用的 API 接口实现与其他系统的无缝集成。 要在后端项目中调用 RAGFlow 的 API,通常需要遵循以下方法: #### 1. 配置环境并安装依赖 确保已克隆项目的源码仓库至本地环境中,并按照官方文档完成必要的初始化操作。可以通过以下命令获取最新版本的代码库: ```bash git clone https://github.com/infiniflow/rag
recommend-type

IE6下实现PNG图片背景透明的技术解决方案

IE6浏览器由于历史原因,对CSS和PNG图片格式的支持存在一些限制,特别是在显示PNG格式图片的透明效果时,经常会出现显示不正常的问题。虽然IE6在当今已不被推荐使用,但在一些老旧的系统和企业环境中,它仍然可能存在。因此,了解如何在IE6中正确显示PNG透明效果,对于维护老旧网站具有一定的现实意义。 ### 知识点一:PNG图片和IE6的兼容性问题 PNG(便携式网络图形格式)支持24位真彩色和8位的alpha通道透明度,这使得它在Web上显示具有透明效果的图片时非常有用。然而,IE6并不支持PNG-24格式的透明度,它只能正确处理PNG-8格式的图片,如果PNG图片包含alpha通道,IE6会显示一个不透明的灰块,而不是预期的透明效果。 ### 知识点二:解决方案 由于IE6不支持PNG-24透明效果,开发者需要采取一些特殊的措施来实现这一效果。以下是几种常见的解决方法: #### 1. 使用滤镜(AlphaImageLoader滤镜) 可以通过CSS滤镜技术来解决PNG透明效果的问题。AlphaImageLoader滤镜可以加载并显示PNG图片,同时支持PNG图片的透明效果。 ```css .alphaimgfix img { behavior: url(DD_Png/PIE.htc); } ``` 在上述代码中,`behavior`属性指向了一个 HTC(HTML Component)文件,该文件名为PIE.htc,位于DD_Png文件夹中。PIE.htc是著名的IE7-js项目中的一个文件,它可以帮助IE6显示PNG-24的透明效果。 #### 2. 使用JavaScript库 有多个JavaScript库和类库提供了PNG透明效果的解决方案,如DD_Png提到的“压缩包子”文件,这可能是一个专门为了在IE6中修复PNG问题而创建的工具或者脚本。使用这些JavaScript工具可以简单快速地解决IE6的PNG问题。 #### 3. 使用GIF代替PNG 在一些情况下,如果透明效果不是必须的,可以使用透明GIF格式的图片替代PNG图片。由于IE6可以正确显示透明GIF,这种方法可以作为一种快速的替代方案。 ### 知识点三:AlphaImageLoader滤镜的局限性 使用AlphaImageLoader滤镜虽然可以解决透明效果问题,但它也有一些局限性: - 性能影响:滤镜可能会影响页面的渲染性能,因为它需要为每个应用了滤镜的图片单独加载JavaScript文件和HTC文件。 - 兼容性问题:滤镜只在IE浏览器中有用,在其他浏览器中不起作用。 - DOM复杂性:需要为每一个图片元素单独添加样式规则。 ### 知识点四:维护和未来展望 随着现代浏览器对标准的支持越来越好,大多数网站开发者已经放弃对IE6的兼容,转而只支持IE8及以上版本、Firefox、Chrome、Safari、Opera等现代浏览器。尽管如此,在某些特定环境下,仍然可能需要考虑到老版本IE浏览器的兼容问题。 对于仍然需要维护IE6兼容性的老旧系统,建议持续关注兼容性解决方案的更新,并评估是否有可能通过升级浏览器或更换技术栈来彻底解决这些问题。同时,对于新开发的项目,强烈建议采用支持现代Web标准的浏览器和开发实践。 在总结上述内容时,我们讨论了IE6中显示PNG透明效果的问题、解决方案、滤镜的局限性以及在现代Web开发中对待老旧浏览器的态度。通过理解这些知识点,开发者能够更好地处理在维护老旧Web应用时遇到的兼容性挑战。
recommend-type

【欧姆龙触摸屏故障诊断全攻略】

# 摘要 本论文全面概述了欧姆龙触摸屏的常见故障类型及其成因,并从理论和实践两个方面深入探讨了故障诊断与修复的技术细节。通过分析触摸屏的工作原理、诊断流程和维护策略,本文不仅提供了一系列硬件和软件故障的诊断与处理技巧,还详细介绍了预防措施和维护工具。此外,本文展望了触摸屏技术的未来发展趋势,讨论了新技术应用、智能化工业自动化整合以及可持续发展和环保设计的重要性,旨在为工程
recommend-type

Educoder综合练习—C&C++选择结构

### 关于 Educoder 平台上 C 和 C++ 选择结构的相关综合练习 在 Educoder 平台上的 C 和 C++ 编程课程中,选择结构是一个重要的基础部分。它通常涉及条件语句 `if`、`else if` 和 `switch-case` 的应用[^1]。以下是针对选择结构的一些典型题目及其解法: #### 条件判断中的最大值计算 以下代码展示了如何通过嵌套的 `if-else` 判断三个整数的最大值。 ```cpp #include <iostream> using namespace std; int max(int a, int b, int c) { if