给出一个CMSIS-NN调用模型并实现预测的完整的代码
时间: 2023-06-14 10:04:43 浏览: 183
以下是一个使用CMSIS-NN调用模型并实现预测的完整代码示例。这个例子使用的是一个预训练的MNIST手写数字识别模型。你需要根据你的模型修改一些参数和调整代码。
```c
#include "arm_math.h"
#include "arm_nnfunctions.h"
#include "arm_nnexamples_cifar10_parameter.h"
#include "arm_nnexamples_cifar10_weights.h"
#include <stdio.h>
#define IMG_SIZE 28*28
#define NUM_CLASSES 10
#define NUM_OUTPUT 10
static q7_t image_data[IMG_SIZE];
static q15_t output_data[NUM_OUTPUT];
int main()
{
arm_status status;
int index;
// Load image data
FILE* fp = fopen("test_image.bin", "rb");
fread(image_data, sizeof(q7_t), IMG_SIZE, fp);
fclose(fp);
// Allocate memory for the convolutional neural network
q7_t* buffer = (q7_t*) malloc(2*CNN_BUFF_SIZE*sizeof(q7_t));
q7_t* scratch = buffer;
q7_t* conv_out = scratch;
scratch += CONV_OUT_SIZE;
q7_t* pool_out = scratch;
scratch += POOL_OUT_SIZE;
q7_t* fc_out = scratch;
scratch += FC_OUT_SIZE;
// Load convolutional neural network parameters
const uint16_t conv_dims[4] = {28, 28, 1, 16};
const uint16_t conv_strides[2] = {1, 1};
const uint16_t conv_padding[2] = {1, 1};
const uint16_t pool_dims[4] = {14, 14, 16, 16};
const uint16_t pool_strides[2] = {2, 2};
const uint16_t pool_padding[2] = {0, 0};
const uint16_t fc_dims[4] = {5, 5, 16, 10};
// Perform convolutional neural network operations
arm_convolve_HWC_q7_basic_nonsquare(image_data, conv_dims, conv_weights, CONV_BIAS, conv_strides, conv_padding, CONV_OUT_CH, CONV_OUT_DIM, conv_out, buffer);
arm_relu_q7(conv_out, CONV_OUT_SIZE);
arm_maxpool_q7_HWC(conv_out, pool_dims, POOL_OUT_CH, pool_strides, pool_padding, pool_out, buffer);
arm_fully_connected_q7_opt(pool_out, fc_weights, FC_BIAS, FC_OUT_DIM, fc_dims, 1, 0, fc_out, buffer);
arm_softmax_q7(fc_out, NUM_CLASSES, output_data);
// Print prediction
float32_t max_val = -3.4028235E+38;
for (index = 0; index < NUM_OUTPUT; index++) {
printf("%d: %d\n", index, output_data[index]);
if (max_val < output_data[index]) {
max_val = output_data[index];
}
}
// Free memory
free(buffer);
return 0;
}
```
你需要根据自己的模型修改以下参数:
- `IMG_SIZE`: 输入图像的大小
- `NUM_CLASSES`: 分类数
- `NUM_OUTPUT`: 输出的大小
- `image_data`: 存储输入图像的数组
- `conv_dims`, `conv_strides`, `conv_padding`, `pool_dims`, `pool_strides`, `pool_padding`, `fc_dims`: 卷积神经网络的参数
- `conv_weights`, `CONV_BIAS`, `fc_weights`, `FC_BIAS`: 卷积神经网络的权重和偏置
你需要将这些参数和模型的权重和偏置导入到你的代码中。最后,你需要编译并运行你的代码,它将输出模型对输入图像的预测结果。
阅读全文