变色龙群优化算法的代码
时间: 2023-09-30 22:06:35 浏览: 97
变色龙群优化算法(Chameleon Optimization Algorithm,简称COA)是一种模拟生物变色龙的群体行为来解决优化问题的算法。以下是一份 Python 代码实现:
```python
import random
import math
class COA:
def __init__(self, dim, size, max_iter, lb, ub, fun):
self.dim = dim
self.size = size
self.max_iter = max_iter
self.lb = lb
self.ub = ub
self.fun = fun
self.best_solution = None
self.best_fitness = float('inf')
def init_population(self):
self.population = []
for i in range(self.size):
solution = []
for j in range(self.dim):
solution.append(random.uniform(self.lb, self.ub))
fitness = self.fun(solution)
if fitness < self.best_fitness:
self.best_solution = solution
self.best_fitness = fitness
self.population.append((solution, fitness))
def update(self):
for i in range(self.size):
r = random.randint(0, self.size-1)
while r == i:
r = random.randint(0, self.size-1)
j = random.randint(0, self.dim-1)
d = abs(self.population[r][0][j] - self.population[i][0][j])
x = self.population[i][0][j] - self.population[i][1]*d*(self.population[r][0][j]-self.population[i][0][j])
if x < self.lb:
x = self.lb
elif x > self.ub:
x = self.ub
solution = self.population[i][0]
solution[j] = x
fitness = self.fun(solution)
if fitness < self.best_fitness:
self.best_solution = solution
self.best_fitness = fitness
self.population[i] = (solution, fitness)
def optimize(self):
self.init_population()
for i in range(self.max_iter):
self.update()
return self.best_solution, self.best_fitness
```
其中,`dim` 是问题的维度,`size` 是种群大小,`max_iter` 是最大迭代次数,`lb` 和 `ub` 分别是问题的下界和上界,`fun` 是目标函数。`init_population` 方法用于初始化种群,`update` 方法用于更新种群,`optimize` 方法用于运行算法并返回最优解和最优值。
阅读全文