MATLAB 变色龙优化算法代码
时间: 2023-09-28 11:10:15 浏览: 142
Matlab 变色龙算法
MATLAB 变色龙优化算法代码如下:
```matlab
function [best_position, best_fitness] = chameleon_optimization(fitness_function, dim, lb, ub, num_iterations, num_population)
% fitness_function: 适应度函数
% dim: 变量维度
% lb: 变量下界
% ub: 变量上界
% num_iterations: 迭代次数
% num_population: 种群数量
% 初始化种群
population = initialize_population(num_population, dim, lb, ub);
% 初始化最优解和最优适应度
best_position = population(1,:);
best_fitness = fitness_function(best_position);
% 开始迭代
for i = 1:num_iterations
% 计算每个个体的适应度
fitness = zeros(num_population, 1);
for j = 1:num_population
fitness(j) = fitness_function(population(j,:));
% 更新最优解
if fitness(j) < best_fitness
best_fitness = fitness(j);
best_position = population(j,:);
end
end
% 变色龙优化算法
for j = 1:num_population
% 随机选择三个不同的个体
r1 = randi([1,num_population]);
r2 = randi([1,num_population]);
while r2 == r1
r2 = randi([1,num_population]);
end
r3 = randi([1,num_population]);
while r3 == r1 || r3 == r2
r3 = randi([1,num_population]);
end
% 计算变色龙方向
direction = population(r1,:) + rand(1,dim).*(population(r2,:)-population(r3,:));
% 随机选择另一个个体
r4 = randi([1,num_population]);
while r4 == j
r4 = randi([1,num_population]);
end
% 更新个体位置
if fitness(j) > fitness(r4)
population(j,:) = population(j,:) + rand(1,dim).*(best_position - population(j,:)) + rand(1,dim).*(direction - population(j,:));
else
population(j,:) = population(j,:) + rand(1,dim).*(best_position - population(j,:)) - rand(1,dim).*(direction - population(j,:));
end
% 限制个体位置在边界内
population(j,:) = max(population(j,:), lb);
population(j,:) = min(population(j,:), ub);
end
end
end
function population = initialize_population(num_population, dim, lb, ub)
% 初始化种群
population = zeros(num_population, dim);
for i = 1:num_population
population(i,:) = lb + rand(1,dim).*(ub-lb);
end
end
```
使用方法:
1. 定义适应度函数 `fitness_function`,例如:
```matlab
function y = sphere(x)
y = sum(x.^2);
end
```
2. 调用 `chameleon_optimization` 函数进行优化,例如:
```matlab
best_position = chameleon_optimization(@sphere, 10, -100, 100, 1000, 50);
```
其中,`10` 为变量维度,`-100` 和 `100` 分别为变量的下界和上界,`1000` 为迭代次数,`50` 为种群数量。函数的返回值 `best_position` 为最优解。
阅读全文