基于MATLAB的变色龙优化算法代码
时间: 2024-05-11 11:18:47 浏览: 98
以下是基于MATLAB的变色龙优化算法代码:
```matlab
% 变色龙优化算法
function BOA()
% 初始化
popsize = 50; % 种群大小
maxgen = 100; % 最大迭代次数
dim = 30; % 变量维度
lb = -100; % 变量下界
ub = 100; % 变量上界
alpha = 0.5; % 变异因子
beta = 0.5; % 向量相减系数
gamma = 0.1; % 步长系数
delta = 0.1; % 随机扰动系数
% 初始化种群
pop = rand(popsize, dim) * (ub - lb) + lb;
fitness = objfun(pop);
% 迭代
for i = 1:maxgen
% 变异
for j = 1:popsize
idx = randperm(popsize, 3);
v = pop(idx(1), :) + alpha * (pop(idx(2), :) - pop(idx(3), :));
v = max(v, lb);
v = min(v, ub);
% 选择
if objfun(v) < fitness(j)
pop(j, :) = v;
fitness(j) = objfun(v);
end
end
% 聚合
for j = 1:popsize
for k = 1:dim
p = pop(j, :);
delta_p = delta * randn(1, dim);
q = p + delta_p;
q = max(q, lb);
q = min(q, ub);
if objfun(q) < objfun(p)
p(k) = q(k);
pop(j, :) = p;
fitness(j) = objfun(p);
else
d = beta * randn(1, dim) .* (p - pop(randperm(popsize, 1), :));
q = p + gamma * d;
q = max(q, lb);
q = min(q, ub);
if objfun(q) < objfun(p)
p(k) = q(k);
pop(j, :) = p;
fitness(j) = objfun(p);
end
end
end
end
% 输出结果
disp(['Iteration: ', num2str(i), ', Best fitness: ', num2str(min(fitness))]);
end
end
% 目标函数
function f = objfun(x)
f = sum(x .^ 2);
end
```
这段代码实现了变色龙优化算法,并使用了一个简单的目标函数作为演示。要使用该代码,只需将`objfun`函数替换为需要优化的目标函数即可。
阅读全文