基于被动时反的 ac-MVDR 水下声源定位python代码
时间: 2023-11-27 16:50:33 浏览: 61
论文研究-基于球谐域MVDR波束形成技术的远场多声源定位 .pdf
以下是基于被动时反的 ac-MVDR 水下声源定位的 Python 代码:
```python
import numpy as np
import scipy.signal as signal
def ac_mvdr_doa_estimation(data, freq_bins, array_geometry, sound_speed, num_src=None):
"""
基于被动时反的 ac-MVDR 水下声源定位
:param data: 录音数据,shape=(num_channels, num_samples)
:param freq_bins: 频率点,shape=(num_freq_bins,)
:param array_geometry: 阵列几何,shape=(num_channels, 3),第一维是x坐标,第二维是y坐标,第三维是z坐标
:param sound_speed: 声速
:param num_src: 声源个数,默认为None,表示不知道声源个数,需要进行自动估计
:return: DOA估计结果,shape=(num_src,)
"""
num_channels = array_geometry.shape[0]
# 计算每个传感器之间的距离
d = np.zeros((num_channels, num_channels))
for i in range(num_channels):
for j in range(num_channels):
d[i, j] = np.linalg.norm(array_geometry[i] - array_geometry[j])
# 计算传感器间相对延迟
tau = d / sound_speed
tau -= np.min(tau)
# STFT
window = signal.hamming(256)
hop_size = 128
f, t, spec = signal.stft(data, window=window, nperseg=256, noverlap=128)
spec = np.transpose(spec, (2, 0, 1)) # shape=(num_freq_bins, num_channels, num_frames)
# 声源个数估计
if num_src is None:
num_frames = spec.shape[2]
P = np.zeros((num_freq_bins, num_channels, num_channels), dtype=np.complex64)
for i in range(num_freq_bins):
Rxx = np.dot(spec[i], np.conj(spec[i]).T) / num_frames
P[i] = np.linalg.inv(Rxx)
P_sum = np.sum(P, axis=0)
eig_values, _ = np.linalg.eig(P_sum)
lambda_min = np.min(np.real(eig_values))
num_src = num_channels - np.sum(np.real(eig_values) < lambda_min / 10)
# 计算空间谱
spec_2 = np.abs(spec) ** 2
Ps = np.zeros((num_freq_bins, num_channels, num_channels), dtype=np.complex64)
for i in range(num_freq_bins):
Rxx = np.dot(spec[i], np.conj(spec[i]).T) / spec.shape[2]
Ps[i] = np.linalg.inv(Rxx)
# 计算空间协方差矩阵的逆
P_sum = np.sum(Ps, axis=0)
inv_P_sum = np.linalg.inv(P_sum)
# 计算指纹矩阵
X = np.zeros((num_freq_bins, num_channels, num_src), dtype=np.complex64)
for i in range(num_freq_bins):
U, s, V = np.linalg.svd(Ps[i])
U = U[:, :num_src]
X[i] = np.dot(np.conj(U).T, inv_P_sum)
# 计算DOA
theta_range = np.arange(-90, 90, 0.5)
num_theta = len(theta_range)
P_music = np.zeros((num_freq_bins, num_theta))
for i in range(num_freq_bins):
Xf = X[i]
for j in range(num_theta):
steering_vec = np.exp(-1j * 2 * np.pi * freq_bins[i] * tau *
np.sin(theta_range[j] / 180 * np.pi))
P_music[i, j] = 1 / (np.dot(np.conj(steering_vec).T, np.dot(Xf, Xf.conj().T.dot(steering_vec))))
# DOA估计
doa_estimates = np.zeros(num_src)
for i in range(num_src):
theta_idx = np.argmax(np.sum(P_music[:, :num_theta // 2], axis=1))
doa_estimates[i] = theta_range[theta_idx]
P_music[:, theta_idx - 2:theta_idx + 3] = 0 # 降低峰值,避免重复估计同一声源
return doa_estimates
```
以上代码使用了一些依赖库,如numpy、scipy等,需要提前安装。代码中的注释可以帮助你更好地理解每个步骤的计算过程。在使用时,你需要准备好录音数据、频率点、阵列几何和声速等参数,然后调用`ac_mvdr_doa_estimation`函数即可得到DOA估计结果。
阅读全文