USART_InitStructure.USART_BaudRate = 115200;//串口波特率 USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式 USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式换hal库

时间: 2023-07-10 16:05:00 浏览: 72
这段代码使用了STM32的标准外设库(StdPeriph Library)来配置USART串口通信参数。如果要使用HAL库,可以参考以下代码: ```c UART_HandleTypeDef huart; huart.Instance = USARTx; huart.Init.BaudRate = 115200; huart.Init.WordLength = UART_WORDLENGTH_8B; huart.Init.StopBits = UART_STOPBITS_1; huart.Init.Parity = UART_PARITY_NONE; huart.Init.Mode = UART_MODE_TX_RX; huart.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart) != HAL_OK) { Error_Handler(); } ``` 其中,USARTx需要替换成具体的USART外设,例如USART1、USART2等。另外,这里使用了HAL库的UART_HandleTypeDef结构体来保存串口通信参数,以及使用HAL_UART_Init()函数来进行初始化。
相关问题

把下面代码用hal库表示:USART_InitStructure.USART_BaudRate = 115200;//串口波特率 USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式 USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式

HAL库代码如下: ``` USART_HandleTypeDef USART_Handle; USART_Handle.Instance = USARTx; USART_Handle.Init.BaudRate = 115200; USART_Handle.Init.WordLength = USART_WORDLENGTH_8B; USART_Handle.Init.StopBits = USART_STOPBITS_1; USART_Handle.Init.Parity = USART_PARITY_NONE; USART_Handle.Init.HwFlowCtl = USART_HWCONTROL_NONE; USART_Handle.Init.Mode = USART_MODE_TX_RX; HAL_USART_Init(&USART_Handle); ``` 其中,`USARTx` 需要替换为具体的USART外设,如:`USART1`、`USART2`等。

void uart6_init(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9|GPIO_Pin_10; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz; //串口,数据传输,主要用于接收(接收函数) USART_InitTypeDef USART_InitStructure; USART_InitStructure.USART_BaudRate=115200; USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode=USART_Mode_Rx|USART_Mode_Tx; USART_InitStructure.USART_Parity=USART_Parity_No;//极性 USART_InitStructure.USART_StopBits=USART_StopBits_1;//停止位 USART_InitStructure.USART_WordLength=USART_WordLength_8b;//字节长度 USART_ITConfig(USART2,USART_IT_RXNE,ENABLE);//中断使能,接收缓冲器 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel=USART2_IRQn; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1; NVIC_InitStructure.NVIC_IRQChannelSubPriority=1; GPIO_Init(GPIOA,&GPIO_InitStructure); NVIC_Init(&NVIC_InitStructure); USART_Init(USART2,&USART_InitStructure); USART_Cmd(USART2,ENABLE); } void USART2_IRQHandler(void) { if(USART_GetITStatus(USART2,USART_FLAG_RXNE)==SET) { } USART_ClearITPendingBit(USART2,USART_FLAG_RXNE); }

这段代码存在几个错误: 1. 在初始化时,使用了不正确的宏定义。函数 `RCC_APB2PeriphClockCmd()` 和 `RCC_APB1PeriphClockCmd()` 应该分别使用 `RCC_APB2PeriphClockCmd()` 和 `RCC_APB1PeriphClockCmd()` 来初始化 GPIOA 和 USART2 模块。 2. 在初始化 GPIO 时,使用了不正确的 GPIO 引脚。GPIO_Pin_9 和 GPIO_Pin_10 分别对应 USART1 的引脚 PA9 和 PA10,而不是 USART2 的引脚。因此,这些引脚需要更改为正确的引脚。 3. 在初始化 USART 时,使用了不正确的 USART 模块。应该将 `USART2` 改为 `USART1`,因为我们要初始化的是 USART1 模块。 4. 在中断处理函数 `USART2_IRQHandler()` 中,缺少接收数据的处理逻辑。你需要在中断处理函数中添加处理接收数据的代码。 最后,缺少返回值 `return 0;`。完整的代码如下: ```c void uart6_init(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; // 已修正 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; USART_InitTypeDef USART_InitStructure; USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); // 已修正 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; // 已修正 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; GPIO_Init(GPIOA, &GPIO_InitStructure); NVIC_Init(&NVIC_InitStructure); USART_Init(USART1, &USART_InitStructure); // 已修正 USART_Cmd(USART1, ENABLE); } void USART1_IRQHandler(void) // 已修正 { if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET) { // 处理接收数据的代码 } USART_ClearITPendingBit(USART1, USART_IT_RXNE); } ``` 这段代码初始化了 STM32 单片机的 USART1 模块,并添加了接收数据的中断处理函数。

相关推荐

GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;// 初始化GPIO口RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;GPIO_Init(GPIOA, &GPIO_InitStructure);// 初始化串口RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);USART_InitStructure.USART_BaudRate = 115200;USART_InitStructure.USART_WordLength = USART_WordLength_8b;USART_InitStructure.USART_StopBits = USART_StopBits_1;USART_InitStructure.USART_Parity = USART_Parity_No;USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;USART_InitStructure.USART_Mode = USART_Mode_Tx;USART_Init(USART1, &USART_InitStructure);USART_Cmd(USART1, ENABLE);ADC_InitTypeDef ADC_InitStructure;TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;NVIC_InitTypeDef NVIC_InitStructure;// 初始化ADC模块RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;ADC_InitStructure.ADC_ScanConvMode = DISABLE;ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T3_TRGO;ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;ADC_InitStructure.ADC_NbrOfChannel = 1;ADC_Init(ADC1, &ADC_InitStructure);ADC_Cmd(ADC1, ENABLE);// 初始化定时器RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);TIM_TimeBaseStructure.TIM_Period = 72000000 / 1000 - 1; // 计数器自动重装值TIM_TimeBaseStructure.TIM_Prescaler = 72 - 1; // 分频系数TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 时钟分割TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; // 计数器向上计数TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);// 配置定时器触发ADC采样TIM_SelectOutputTrigger(TIM3, TIM_TRGOSource_Update);ADC_ExternalTrigConvCmd(ADC1, ENABLE);// 初始化定时器中断TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;NVIC_Init(&NVIC_InitStructure);void TIM3_IRQHandler(void) { if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) { TIM_ClearITPendingBit(TIM3, TIM_IT_Update); ADC_SoftwareStartConvCmd(ADC1, ENABLE); while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); uint16_t adcValue = ADC_GetConversionValue(ADC1); USART_SendData(USART1, adcValue >> 8); while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); USART_SendData(USART1, adcValue & 0xff); while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); }}

void myUSART_Init() { RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE); GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_USART1); GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_USART1); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Mode =GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB,&GPIO_InitStructure); USART_InitTypeDef USART_InitStuctyre; USART_InitStuctyre.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_InitStuctyre.USART_Parity = USART_Parity_No; USART_InitStuctyre.USART_StopBits = USART_StopBits_1; USART_InitStuctyre.USART_BaudRate = 9600; USART_InitStuctyre.USART_WordLength = USART_WordLength_8b; USART_InitStuctyre.USART_HardwareFlowControl =USART_HardwareFlowControl_None; USART_Init(USART1,&USART_InitStuctyre); USART_Cmd(USART1,ENABLE); USART_ITConfig(USART1,USART_IT_TXE,ENABLE); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3; NVIC_Init(&NVIC_InitStructure); } void myUSARTsend_Byte(uint16_t Byte) { USART_SendData(USART1,Byte); while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET); } void myUSARTsend_Array(uint8_t *Array,uint16_t Length) { uint16_t i; for(i=0;i<=Length;i++) { myUSARTsend_Byte(Array[i]); } }

int main(void) { char message[100]={0}; gpio_Init(); USART1_Init(); while(1) { // ??????? while(USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET); // ???? while(USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == SET) { message[i++] = USART_ReceiveData(USART1); } // ???????? if(strstr(message, "LIGHT ON") != NULL) { GPIO_SetBits(GPIOC, GPIO_Pin_13); } else if(strstr(message, "LIGHT OFF") != NULL) { GPIO_ResetBits(GPIOC, GPIO_Pin_13); } else if(strstr(message, "TEMPERATURE") != NULL) { // ?????? float temperature = 0; // TODO: ?????? // ?????? char str[50]; sprintf(str, "Temperature: %.2f", temperature); USART1_SendString((uint8_t*) str); } // ??1? delay(1000); }} void gpio_Init(void){ GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOC, &GPIO_InitStructure);} void USART1_Init(void) { USART_InitTypeDef USART_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART1, &USART_InitStructure); USART_Cmd(USART1, ENABLE);} void USART1_SendByte(uint8_t byte) { while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); USART_SendD解释每句代码的意思,在每句代码后面写出注释

void uart_init(u32 bound){ //GPIO端口设置 GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE); //使能USART1,GPIOA时钟 //USART1_TX GPIOA.9 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出 GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.2 //USART1_RX GPIOA.10初始化 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入 GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.10 //Usart1 NVIC 配置 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级3 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //子优先级3 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能 NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器 //USART 初始化设置 USART_InitStructure.USART_BaudRate = bound;//串口波特率 USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式 USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式 USART_Init(USART1, &USART_InitStructure); //初始化串口1 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串口接受中断 USART_Cmd(USART1, ENABLE); //使能串口1 } 这串代码中规定了哪个引脚是usart的rx与tx

最新推荐

recommend-type

setuptools-40.7.3-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Centos7-离线安装redis

Centos7-离线安装redis
recommend-type

setuptools-39.0.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于JSP实现的在线仓库管理系统源码.zip

这个是一个JSP实现的在线仓库管理系统,管理员角色包含以下功能:仓库管理员登录,货品&amp;类别信息管理,采购信息管理,出库和入库管理,财务信息管理,管理员管理等功能。 本项目实现的最终作用是基于JSP实现的在线仓库管理系统 分为1个角色 第1个角色为管理员角色,实现了如下功能: - 仓库管理员登录 - 出库和入库管理 - 管理员管理 - 财务信息管理 - 货品&类别信息管理 - 采购信息管理
recommend-type

基于springboot的房屋租赁系统

开发语言:Java JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.6/5.7(或8.0) 数据库工具:Navicat 开发软件:idea 依赖管理包:Maven 代码+数据库保证完整可用,可提供远程调试并指导运行服务(额外付费)~ 如果对系统的中的某些部分感到不合适可提供修改服务,比如题目、界面、功能等等... 声明: 1.项目已经调试过,完美运行 2.需要远程帮忙部署项目,需要额外付费 3.本项目有演示视频,如果需要观看,请联系我v:19306446185 4.调试过程中可帮忙安装IDEA,eclipse,MySQL,JDK,Tomcat等软件 重点: 需要其他Java源码联系我,更多源码任你选,你想要的源码我都有! https://img-blog.csdnimg.cn/direct/e73dc0ac8d27434b86d886db5a438c71.jpeg
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。