Pytorch 实现冻结指定卷积层的参数
时间: 2023-11-26 20:04:47 浏览: 63
可以通过设置 requires_grad=False 来冻结指定卷积层的参数,示例如下:
```python
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
self.conv4 = nn.Conv2d(64, 128, 3, padding=1)
self.conv5 = nn.Conv2d(128, 256, 3, padding=1)
# 将 conv3 和 conv4 冻结,不更新权重参数
for param in self.conv3.parameters():
param.requires_grad = False
for param in self.conv4.parameters():
param.requires_grad = False
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
return x
```
希望以上回答对您有所帮助!
阅读全文