用c++编写用深度优先算法和广度优先算法解决八数码问题

时间: 2023-07-31 17:06:21 浏览: 167
好的,我可以为您讲解一下如何用C++编写用深度优先算法和广度优先算法解决八数码问题。 八数码问题是一种经典的搜索问题,旨在找到一种移动拼图块的方式,以使得初始状态变为目标状态。其中,每个拼图块只能移动到空格上,而且只能沿横向或纵向移动。这个问题可以使用深度优先算法和广度优先算法进行解决。 首先,我们需要定义一个八数码状态的数据结构。一种常见的表示方式是使用一个一维数组来表示状态,其中0表示空格。例如,初始状态[1,2,3,4,0,5,6,7,8]可以表示为: ``` 1 2 3 4 5 6 7 8 ``` 接下来,我们可以使用一个搜索树来表示所有可能的状态。搜索树的根节点为初始状态,每个节点表示一个状态,其子节点是通过移动一块得到的所有可能状态。我们可以使用一个队列来实现广度优先算法,或使用递归函数来实现深度优先算法。 下面是一种使用广度优先算法解决八数码问题的C++代码实现: ```c++ #include <iostream> #include <queue> #include <vector> using namespace std; const int N = 9; const int dx[4] = {-1, 0, 1, 0}; const int dy[4] = {0, 1, 0, -1}; struct State { int a[N]; int pos; int steps; }; bool check(const State& s) { for (int i = 0; i < N; i++) { if (s.a[i] != i) return false; } return true; } void print(const State& s) { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { cout << s.a[i * 3 + j] << " "; } cout << endl; } cout << endl; } int bfs(const State& start) { queue<State> q; vector<State> vis; q.push(start); vis.push_back(start); while (!q.empty()) { State s = q.front(); q.pop(); if (check(s)) return s.steps; for (int i = 0; i < 4; i++) { int nx = s.pos / 3 + dx[i], ny = s.pos % 3 + dy[i]; if (nx < 0 || nx >= 3 || ny < 0 || ny >= 3) continue; State t = s; swap(t.a[s.pos], t.a[nx * 3 + ny]); t.pos = nx * 3 + ny; t.steps++; bool ok = true; for (int i = 0; i < vis.size(); i++) { if (vis[i].pos == t.pos && vis[i].a == t.a) { ok = false; break; } } if (ok) { q.push(t); vis.push_back(t); } } } return -1; } int main() { State start; for (int i = 0; i < N; i++) { cin >> start.a[i]; if (start.a[i] == 0) start.pos = i; } start.steps = 0; cout << bfs(start) << endl; return 0; } ``` 这个实现中,我们定义了一个State结构体来表示八数码状态,其中a数组存储状态,pos表示空格位置,steps表示移动步数。check函数用于判断是否到达目标状态,print函数用于输出状态。 在bfs函数中,我们使用一个队列q和一个vector vis来实现广度优先搜索。每次从队列中取出一个状态,尝试通过移动一块来得到所有可能的状态,然后将未访问过的状态加入队列中。如果已经访问过,则不再加入队列。 这个实现中,我们使用了一个check函数来判断是否到达目标状态,但实际上也可以在枚举状态时直接判断。另外,我们可以使用一个pre数组来记录状态的前驱节点,以便输出路径。 接下来,我们看一下如何使用深度优先算法解决八数码问题。这个实现中,我们使用了递归函数来实现深度优先搜索。 ```c++ #include <iostream> #include <stack> #include <vector> using namespace std; const int N = 9; const int dx[4] = {-1, 0, 1, 0}; const int dy[4] = {0, 1, 0, -1}; struct State { int a[N]; int pos; int steps; }; bool check(const State& s) { for (int i = 0; i < N; i++) { if (s.a[i] != i) return false; } return true; } void print(const State& s) { for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { cout << s.a[i * 3 + j] << " "; } cout << endl; } cout << endl; } bool dfs(const State& s, int depth, int limit, vector<State>& vis, stack<State>& path) { if (check(s)) { while (!path.empty()) { print(path.top()); path.pop(); } print(s); return true; } if (depth + s.steps > limit) return false; for (int i = 0; i < 4; i++) { int nx = s.pos / 3 + dx[i], ny = s.pos % 3 + dy[i]; if (nx < 0 || nx >= 3 || ny < 0 || ny >= 3) continue; State t = s; swap(t.a[s.pos], t.a[nx * 3 + ny]); t.pos = nx * 3 + ny; t.steps++; bool ok = true; for (int i = 0; i < vis.size(); i++) { if (vis[i].pos == t.pos && vis[i].a == t.a) { ok = false; break; } } if (ok) { vis.push_back(t); path.push(t); if (dfs(t, depth + 1, limit, vis, path)) return true; path.pop(); } } return false; } int iddfs(const State& start) { vector<State> vis; stack<State> path; for (int limit = 0; ; limit++) { vis.clear(); path.push(start); vis.push_back(start); if (dfs(start, 0, limit, vis, path)) return limit; path.pop(); } return -1; } int main() { State start; for (int i = 0; i < N; i++) { cin >> start.a[i]; if (start.a[i] == 0) start.pos = i; } start.steps = 0; cout << iddfs(start) << endl; return 0; } ``` 这个实现中,我们定义了一个dfs函数来实现深度优先搜索,并使用一个limit参数来控制搜索深度。在dfs函数中,我们首先判断当前状态是否为目标状态,如果是,则输出路径并返回true。否则,如果当前深度加上移动步数已经超过了限制,则返回false。然后,我们枚举所有可能的状态,并判断是否已经访问过,如果未访问过,则递归调用dfs函数。如果递归调用返回true,则表示已经找到了目标状态,否则需要弹出当前状态。 在iddfs函数中,我们使用一个循环来不断增加限制,直到找到目标状态或搜索到最大深度为止。 这个实现中,我们使用了一个vis数组来记录已经访问过的状态,以便避免重复访问。另外,我们使用了一个path栈来记录路径,以便输出路径。在输出路径时,我们可以从栈顶往栈底依次输出状态。 需要注意的是,八数码问题并不是所有情况下都有解的。如果初始状态与目标状态不可达,则算法会一直搜索下去,直到达到限制深度为止。因此,在实际应用中,需要对问题进行判断,以避免无谓的计算。
阅读全文

相关推荐

大家在看

recommend-type

SD Specifications Part 1 - Physical Layer Specification 4.0

SD Specifications Part 1 Physical Layer Simplified Specification Version 4.10 January 22, 2013
recommend-type

ORAN协议 v04.00

ORAN协议 v04.00
recommend-type

以下为转载Plasma工作原理介紹-plasma等离子处理

 以下为转载 Plasma工作原理介紹 工作原理 清洁效果的检验  Pull and Shear tests  Water contact angle measurement  Auger Electron Spectroscopic Analysis Plasma机构原理圖 Plasma產生的原理 Plasma產生的條件 Ar/O2 Plasma的原理 Plasma Process Plasma Parameter--(pc32系列) Plasma 功效 早期,日本为了迎合高集成度的电子制造技术,开始使用超薄镀金技术,镀金厚度小于0.05mm。但问题也随之而来,当DM工艺后,经过烘烤,使原镀金层下的Ni元素会上移到表面。在随后的WB工艺中由于这些Ni元素及其他沾污会导致着线不佳现象,甚至着不上线(漏线,少线,第一点剥离,第二点剥离)。Plasma清洗机也就随之出现。 初版----劉卓 更新版----彭齊全
recommend-type

100万条虚拟游戏人物等级数据

游戏人物id、姓名、等级、性别、血量,魔力、力量,智力,体力,精神这十个就是我们需要生成的相关数据,具体生成数据教程可以看我的文章https://editor.csdn.net/md/?articleId=128610064
recommend-type

集成运放电路-multisim14仿真教程

13.6 集成运放电路 由分立元件构成的电路具有电子设计上灵活性大的优点,但缺点是功耗大、稳定性差、可靠性差, 此外,设计本身较复杂。集成电路采用微电子技术构成具有特定功能的电路系统模块,与分立元件构成 的电路相比,性能有了很大提高,电子设计也更为简单。 集成运算放大器是高增益、高输入阻抗、低输出阻抗、直接耦合的线性放大集成电路,功耗低、稳 定性好、可靠性高。可以通过外围元器件的连接构成放大器、信号发生电路、运算电路、滤波器等电路。 以集成运放μA741 为例,图 13.6-1 是μA741 的管脚示意图及实物照片。 图 13.6-1 集成运放μA741 管脚示意图及实物照片

最新推荐

recommend-type

小孩分油问题(广度优先搜索算法)实验报告及c++程序

《小孩分油问题的广度优先搜索算法及C++实现》 小孩分油问题是一个经典的逻辑谜题,它涉及到如何利用有限的资源精确地分配物品。在这个问题中,两个小孩只有一斤、七两和三两的三个瓶子,以及一斤的油。目标是将一...
recommend-type

人工智能 A*算法 八数码问题 C++ 报告+代码+详细注释

本文将详细讲解如何使用C++实现A*算法来解决经典的八数码问题,同时结合提供的代码进行解析。 一、A*算法简介 A*算法是一种启发式搜索算法,它结合了Dijkstra算法的最短路径特性与最佳优先搜索的效率。算法通过评估...
recommend-type

基于C++的农夫过河问题算法设计与实现方法

为了解决这个问题,我们可以采用两种不同的策略:一种广度优先搜索,另一种深度优先搜索。这里我们主要介绍了广度优先搜索方法中采用的数据结构设计。 在广度优先搜索方法中,我们使用了队列来存储状态。队列是一种...
recommend-type

智能家居_物联网_环境监控_多功能应用系统_1741777957.zip

人脸识别项目实战
recommend-type

PLC热反应炉仿真程序和报告 ,PLC; 热反应炉; 仿真程序; 报告,PLC热反应炉仿真程序报告

PLC热反应炉仿真程序和报告 ,PLC; 热反应炉; 仿真程序; 报告,PLC热反应炉仿真程序报告
recommend-type

虚拟串口软件:实现IP信号到虚拟串口的转换

在IT行业,虚拟串口技术是模拟物理串行端口的一种软件解决方案。虚拟串口允许在不使用实体串口硬件的情况下,通过计算机上的软件来模拟串行端口,实现数据的发送和接收。这对于使用基于串行通信的旧硬件设备或者在系统中需要更多串口而硬件资源有限的情况特别有用。 虚拟串口软件的作用机制是创建一个虚拟设备,在操作系统中表现得如同实际存在的硬件串口一样。这样,用户可以通过虚拟串口与其它应用程序交互,就像使用物理串口一样。虚拟串口软件通常用于以下场景: 1. 对于使用老式串行接口设备的用户来说,若计算机上没有相应的硬件串口,可以借助虚拟串口软件来与这些设备进行通信。 2. 在开发和测试中,开发者可能需要模拟多个串口,以便在没有真实硬件串口的情况下进行软件调试。 3. 在虚拟机环境中,实体串口可能不可用或难以配置,虚拟串口则可以提供一个无缝的串行通信途径。 4. 通过虚拟串口软件,可以在计算机网络中实现串口设备的远程访问,允许用户通过局域网或互联网进行数据交换。 虚拟串口软件一般包含以下几个关键功能: - 创建虚拟串口对,用户可以指定任意数量的虚拟串口,每个虚拟串口都有自己的参数设置,比如波特率、数据位、停止位和校验位等。 - 捕获和记录串口通信数据,这对于故障诊断和数据记录非常有用。 - 实现虚拟串口之间的数据转发,允许将数据从一个虚拟串口发送到另一个虚拟串口或者实际的物理串口,反之亦然。 - 集成到操作系统中,许多虚拟串口软件能被集成到操作系统的设备管理器中,提供与物理串口相同的用户体验。 关于标题中提到的“无毒附说明”,这是指虚拟串口软件不含有恶意软件,不含有病毒、木马等可能对用户计算机安全造成威胁的代码。说明文档通常会详细介绍软件的安装、配置和使用方法,确保用户可以安全且正确地操作。 由于提供的【压缩包子文件的文件名称列表】为“虚拟串口”,这可能意味着在进行虚拟串口操作时,相关软件需要对文件进行操作,可能涉及到的文件类型包括但不限于配置文件、日志文件以及可能用于数据保存的文件。这些文件对于软件来说是其正常工作的重要组成部分。 总结来说,虚拟串口软件为计算机系统提供了在软件层面模拟物理串口的功能,从而扩展了串口通信的可能性,尤其在缺少物理串口或者需要实现串口远程通信的场景中。虚拟串口软件的设计和使用,体现了IT行业为了适应和解决实际问题所创造的先进技术解决方案。在使用这类软件时,用户应确保软件来源的可靠性和安全性,以防止潜在的系统安全风险。同时,根据软件的使用说明进行正确配置,确保虚拟串口的正确应用和数据传输的安全。
recommend-type

【Python进阶篇】:掌握这些高级特性,让你的编程能力飞跃提升

# 摘要 Python作为一种高级编程语言,在数据处理、分析和机器学习等领域中扮演着重要角色。本文从Python的高级特性入手,深入探讨了面向对象编程、函数式编程技巧、并发编程以及性能优化等多个方面。特别强调了类的高级用法、迭代器与生成器、装饰器、高阶函数的运用,以及并发编程中的多线程、多进程和异步处理模型。文章还分析了性能优化技术,包括性能分析工具的使用、内存管理与垃圾回收优
recommend-type

后端调用ragflow api

### 如何在后端调用 RAGFlow API RAGFlow 是一种高度可配置的工作流框架,支持从简单的个人应用扩展到复杂的超大型企业生态系统的场景[^2]。其提供了丰富的功能模块,包括多路召回、融合重排序等功能,并通过易用的 API 接口实现与其他系统的无缝集成。 要在后端项目中调用 RAGFlow 的 API,通常需要遵循以下方法: #### 1. 配置环境并安装依赖 确保已克隆项目的源码仓库至本地环境中,并按照官方文档完成必要的初始化操作。可以通过以下命令获取最新版本的代码库: ```bash git clone https://github.com/infiniflow/rag
recommend-type

IE6下实现PNG图片背景透明的技术解决方案

IE6浏览器由于历史原因,对CSS和PNG图片格式的支持存在一些限制,特别是在显示PNG格式图片的透明效果时,经常会出现显示不正常的问题。虽然IE6在当今已不被推荐使用,但在一些老旧的系统和企业环境中,它仍然可能存在。因此,了解如何在IE6中正确显示PNG透明效果,对于维护老旧网站具有一定的现实意义。 ### 知识点一:PNG图片和IE6的兼容性问题 PNG(便携式网络图形格式)支持24位真彩色和8位的alpha通道透明度,这使得它在Web上显示具有透明效果的图片时非常有用。然而,IE6并不支持PNG-24格式的透明度,它只能正确处理PNG-8格式的图片,如果PNG图片包含alpha通道,IE6会显示一个不透明的灰块,而不是预期的透明效果。 ### 知识点二:解决方案 由于IE6不支持PNG-24透明效果,开发者需要采取一些特殊的措施来实现这一效果。以下是几种常见的解决方法: #### 1. 使用滤镜(AlphaImageLoader滤镜) 可以通过CSS滤镜技术来解决PNG透明效果的问题。AlphaImageLoader滤镜可以加载并显示PNG图片,同时支持PNG图片的透明效果。 ```css .alphaimgfix img { behavior: url(DD_Png/PIE.htc); } ``` 在上述代码中,`behavior`属性指向了一个 HTC(HTML Component)文件,该文件名为PIE.htc,位于DD_Png文件夹中。PIE.htc是著名的IE7-js项目中的一个文件,它可以帮助IE6显示PNG-24的透明效果。 #### 2. 使用JavaScript库 有多个JavaScript库和类库提供了PNG透明效果的解决方案,如DD_Png提到的“压缩包子”文件,这可能是一个专门为了在IE6中修复PNG问题而创建的工具或者脚本。使用这些JavaScript工具可以简单快速地解决IE6的PNG问题。 #### 3. 使用GIF代替PNG 在一些情况下,如果透明效果不是必须的,可以使用透明GIF格式的图片替代PNG图片。由于IE6可以正确显示透明GIF,这种方法可以作为一种快速的替代方案。 ### 知识点三:AlphaImageLoader滤镜的局限性 使用AlphaImageLoader滤镜虽然可以解决透明效果问题,但它也有一些局限性: - 性能影响:滤镜可能会影响页面的渲染性能,因为它需要为每个应用了滤镜的图片单独加载JavaScript文件和HTC文件。 - 兼容性问题:滤镜只在IE浏览器中有用,在其他浏览器中不起作用。 - DOM复杂性:需要为每一个图片元素单独添加样式规则。 ### 知识点四:维护和未来展望 随着现代浏览器对标准的支持越来越好,大多数网站开发者已经放弃对IE6的兼容,转而只支持IE8及以上版本、Firefox、Chrome、Safari、Opera等现代浏览器。尽管如此,在某些特定环境下,仍然可能需要考虑到老版本IE浏览器的兼容问题。 对于仍然需要维护IE6兼容性的老旧系统,建议持续关注兼容性解决方案的更新,并评估是否有可能通过升级浏览器或更换技术栈来彻底解决这些问题。同时,对于新开发的项目,强烈建议采用支持现代Web标准的浏览器和开发实践。 在总结上述内容时,我们讨论了IE6中显示PNG透明效果的问题、解决方案、滤镜的局限性以及在现代Web开发中对待老旧浏览器的态度。通过理解这些知识点,开发者能够更好地处理在维护老旧Web应用时遇到的兼容性挑战。
recommend-type

【欧姆龙触摸屏故障诊断全攻略】

# 摘要 本论文全面概述了欧姆龙触摸屏的常见故障类型及其成因,并从理论和实践两个方面深入探讨了故障诊断与修复的技术细节。通过分析触摸屏的工作原理、诊断流程和维护策略,本文不仅提供了一系列硬件和软件故障的诊断与处理技巧,还详细介绍了预防措施和维护工具。此外,本文展望了触摸屏技术的未来发展趋势,讨论了新技术应用、智能化工业自动化整合以及可持续发展和环保设计的重要性,旨在为工程