population, objectives = moea(100, 100)、parent1 = population[random.randint(0, pop_size-1)]报错“list index out of range”
时间: 2024-05-26 09:14:39 浏览: 114
这个错误通常出现在尝试访问一个列表中不存在的索引时。可能是在使用 `population` 列表或 `parent1` 变量时,索引参数超出了列表的范围,导致出现了该错误。
请检查一下你的代码,确保你的 `population` 列表至少有 `pop_size` 个元素,并且 `random.randint(0, pop_size-1)` 的范围不超出 `population` 列表的索引范围。如果 `population` 列表中没有足够的元素,你可以尝试增加种群大小或更改随机数范围。
此外,如果你的代码中使用了其他列表或索引,也请检查它们是否出现了类似的错误。
相关问题
import numpy as np from platypus import NSGAII, Problem, Real, Integer # 定义问题 class JobShopProblem(Problem): def __init__(self, jobs, machines, processing_times): num_jobs = len(jobs) num_machines = len(machines[0]) super().__init__(num_jobs, 1, 1) self.jobs = jobs self.machines = machines self.processing_times = processing_times self.types[:] = Integer(0, num_jobs - 1) self.constraints[:] = [lambda x: x[0] == 1] def evaluate(self, solution): job_order = np.argsort(np.array(solution.variables[:], dtype=int)) machine_available_time = np.zeros(len(self.machines)) job_completion_time = np.zeros(len(self.jobs)) for job_idx in job_order: job = self.jobs[job_idx] for machine_idx, processing_time in zip(job, self.processing_times[job_idx]): machine_available_time[machine_idx] = max(machine_available_time[machine_idx], job_completion_time[job_idx]) job_completion_time[job_idx] = machine_available_time[machine_idx] + processing_time solution.objectives[:] = [np.max(job_completion_time)] # 定义问题参数 jobs = [[0, 1], [2, 0], [1, 2]] machines = [[0, 1, 2], [1, 2, 0], [2, 0, 1]] processing_times = [[5, 4], [3, 5], [1, 3]] # 创建算法实例 problem = JobShopProblem(jobs, machines, processing_times) algorithm = NSGAII(problem) algorithm.population_size = 100 # 设置优化目标 problem.directions[:] = Problem.MINIMIZE # 定义算法参数 algorithm.population_size = 100 max_generations = 100 mutation_probability = 0.1 # 设置算法参数 algorithm.max_iterations = max_generations algorithm.mutation_probability = mutation_probability # 运行算法 algorithm.run(max_generations) # 输出结果 print("最小化的最大完工时间:", algorithm.result[0].objectives[0]) print("工件加工顺序和机器安排方案:", algorithm.result[0].variables[:]) 请检查上述代码
代码的语法没有问题,但是在定义问题时,约束条件中的 lambda 函数有误。应该将 x[0] == 1 改为 x[0] == 0,因为变量的范围是 0 到 num_jobs - 1。另外,应该在 lambda 函数前加上 @staticmethod,表示这是一个静态方法。修改后的代码如下:
```
import numpy as np
from platypus import NSGAII, Problem, Real, Integer
# 定义问题
class JobShopProblem(Problem):
def __init__(self, jobs, machines, processing_times):
num_jobs = len(jobs)
num_machines = len(machines[0])
super().__init__(num_jobs, 1, 1)
self.jobs = jobs
self.machines = machines
self.processing_times = processing_times
self.types[:] = Integer(0, num_jobs - 1)
self.constraints[:] = [self.check_order]
@staticmethod
def check_order(x):
return x[0] == 0
def evaluate(self, solution):
job_order = np.argsort(np.array(solution.variables[:], dtype=int))
machine_available_time = np.zeros(len(self.machines))
job_completion_time = np.zeros(len(self.jobs))
for job_idx in job_order:
job = self.jobs[job_idx]
for machine_idx, processing_time in zip(job, self.processing_times[job_idx]):
machine_available_time[machine_idx] = max(machine_available_time[machine_idx], job_completion_time[job_idx])
job_completion_time[job_idx] = machine_available_time[machine_idx] + processing_time
solution.objectives[:] = [np.max(job_completion_time)]
# 定义问题参数
jobs = [[0, 1], [2, 0], [1, 2]]
machines = [[0, 1, 2], [1, 2, 0], [2, 0, 1]]
processing_times = [[5, 4], [3, 5], [1, 3]]
# 创建算法实例
problem = JobShopProblem(jobs, machines, processing_times)
algorithm = NSGAII(problem)
algorithm.population_size = 100
# 设置优化目标
problem.directions[:] = Problem.MINIMIZE
# 定义算法参数
algorithm.population_size = 100
max_generations = 100
mutation_probability = 0.1
# 设置算法参数
algorithm.max_iterations = max_generations
algorithm.mutation_probability = mutation_probability
# 运行算法
algorithm.run(max_generations)
# 输出结果
print("最小化的最大完工时间:", algorithm.result[0].objectives[0])
print("工件加工顺序和机器安排方案:", algorithm.result[0].variables[:])
```
% 遗传算法参数设置 population_size = 50;%种群大小 chromosome_length = 649;%染色体长度 sparse_degree = 30;%稀疏度 crossover_rate = 0.6; %交叉度 mutation_rate = 0.2; %变异度 max_generations = 80;%最大迭代次数 % 初始化种群 population = initialize_population(population_size, chromosome_length, sparse_degree); %解码,获取资产位置 selected_assets_matrixs=zeros(population_size,sparse_degree); for i = 1:population_size chromosome = population(i,:); selected_assets_matrixs(i,:)= decode_chromosome(chromosome);% 资产索引(selected_assets) end %初始化资产比例 asset_ratios=zeros(population_size,sparse_degree); for k=1:population_size asset_ratios(k,:)= rand(sparse_degree, 1); asset_ratios(k,:) = asset_ratios(k,:) / sum(asset_ratios(k,:)); end %计算初始种群的目标函数值 objectives =[]; objectives = cost_func(population_size,asset_ratios,selected_assets_matrixs,insample_CSI300,insample_ESG100); %初始种群的非支配排序及拥挤度计算 [F,ndx] = fast_nondominated_sort(objectives); crowding_distance = calculate_crowding_distance(objectives, F,ndx); %开始迭代 gen = 1; for gen = 1:max_generations %选择父代个体 parent_indices = select_parents(crowding_distance); %执行交叉操作 children = crossover(population, parent_indices, crossover_rate); %执行变异操作 children = mutation(children, mutation_rate); %对新的个体进行解码,得到资产比例和资产位置 selected_assets_matrixs=zeros(population_size,sparse_degree); asset_ratios=zeros(population_size,sparse_degree); for i = 1:population_size chromosome = children(i,:); selected_assets_matrixs(i,:)= decode_chromosome(chromosome);% 资产索引(selected_assets) asset_ratios(i,:)= rand(sparse_degree, 1); asset_ratios(i,:) = asset_ratios(i,:) / sum(asset_ratios(i,:)); end %计算新个体的目标函数值 new_objectives = cost_func(population_size,asset_ratios,selected_assets_matrixs,insample_CSI300,insample_ESG100); %将新个体加入到种群中,并删除种群中适应度值较差的个体 population = insert_children(population, parent_indices, children, new_objectives, objectives); [F,ndx] = fast_nondominated_sort(new_objectives); crowding_distance = calculate_crowding_distance(new_objectives, F,ndx); objectives = new_objectives; end这段代码有什么错误
这段代码可能存在以下问题:
1. 在计算新个体的目标函数值时,使用了旧的种群大小 population_size,而没有更新为新的种群大小,可能会导致计算错误。
2. 在每次迭代中,都对整个种群进行了解码、资产比例初始化等操作,而没有只对新增的个体进行操作,这样做会增加程序的计算时间复杂度。
3. 没有对新个体进行非支配排序和拥挤度计算,而是直接将新个体加入到种群中,这样可能会破坏种群的多样性,影响算法的性能。
4. 在调用 insert_children() 函数时,没有传入新个体的目标函数值 new_objectives,而是传入了旧的目标函数值 objectives,这样会导致非支配排序和拥挤度计算出现问题。
建议修改代码如下:
```
% 遗传算法参数设置
population_size = 50;%种群大小
chromosome_length = 649;%染色体长度
sparse_degree = 30;%稀疏度
crossover_rate = 0.6; %交叉度
mutation_rate = 0.2; %变异度
max_generations = 80;%最大迭代次数
% 初始化种群
population = initialize_population(population_size, chromosome_length, sparse_degree);
% 解码,获取资产位置
selected_assets_matrixs = zeros(population_size, sparse_degree);
for i = 1:population_size
chromosome = population(i, :);
selected_assets_matrixs(i, :) = decode_chromosome(chromosome);% 资产索引(selected_assets)
end
% 初始化资产比例
asset_ratios = zeros(population_size, sparse_degree);
for k = 1:population_size
asset_ratios(k, :) = rand(sparse_degree, 1);
asset_ratios(k, :) = asset_ratios(k, :) / sum(asset_ratios(k, :));
end
% 计算初始种群的目标函数值
objectives = cost_func(population_size, asset_ratios, selected_assets_matrixs, insample_CSI300, insample_ESG100);
% 初始种群的非支配排序及拥挤度计算
[F, ndx] = fast_nondominated_sort(objectives);
crowding_distance = calculate_crowding_distance(objectives, F, ndx);
% 开始迭代
for gen = 1:max_generations
% 选择父代个体
parent_indices = select_parents(crowding_distance);
% 执行交叉操作
children = crossover(population(parent_indices, :), crossover_rate);
% 执行变异操作
children = mutation(children, mutation_rate);
% 对新的个体进行解码,得到资产比例和资产位置
new_selected_assets_matrixs = zeros(length(parent_indices), sparse_degree);
new_asset_ratios = zeros(length(parent_indices), sparse_degree);
for i = 1:length(parent_indices)
chromosome = children(i, :);
new_selected_assets_matrixs(i, :) = decode_chromosome(chromosome);% 资产索引(selected_assets)
new_asset_ratios(i, :) = rand(sparse_degree, 1);
new_asset_ratios(i, :) = new_asset_ratios(i, :) / sum(new_asset_ratios(i, :));
end
% 计算新个体的目标函数值
new_objectives = cost_func(length(parent_indices), new_asset_ratios, new_selected_assets_matrixs, insample_CSI300, insample_ESG100);
% 将新个体加入到种群中,并删除种群中适应度值较差的个体
population = insert_children(population, parent_indices, children, new_objectives);
objectives = [objectives; new_objectives];% 更新目标函数值
[F, ndx] = fast_nondominated_sort(objectives);
crowding_distance = calculate_crowding_distance(objectives, F, ndx);
end
```
修改后的代码对新增的个体进行了单独处理,减少了程序的计算时间复杂度;同时,对新个体进行了非支配排序和拥挤度计算,并更新了目标函数值。
阅读全文