fshift_trans = cv2.warpAffine(fshift, M, (cols, rows))

时间: 2023-06-26 14:05:01 浏览: 40
这行代码使用了OpenCV库中的warpAffine函数,它将频域图像fshift按照仿射变换矩阵M进行变换,并将结果保存在fshift_trans中。函数的第一个参数fshift是输入图像,第二个参数M是变换矩阵,第三个参数是输出图像的大小。在这里,输出图像的大小被设置为(cols, rows),它是输入图像的大小,因为我们希望对输入图像进行平移操作。
相关问题

改进这段代码import cv2 import numpy as np img = cv2.imread('E:\数字图像处理实验\数字图像处理1.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) f = np.fft.fft2(gray) fshift = np.fft.fftshift(f) rows, cols = gray.shape crow, ccol = int(rows/2), int(cols/2) tx, ty = 50, 50 M = np.float32([[1, 0, tx], [0, 1, ty]]) fshift_trans = cv2.warpAffine(fshift, M, (cols, rows)) angle = 30 M = cv2.getRotationMatrix2D((ccol, crow), angle, 1) fshift_rot = cv2.warpAffine(fshift, M, (cols, rows)) fshift_center = fshift_trans[crow-100:crow+100, ccol-100:ccol+100] fshift_rot_center = fshift_rot[crow-100:crow+100, ccol-100:ccol+100] img_trans = np.fft.ifft2(np.fft.ifftshift(fshift_center)).real img_trans = np.uint8(img_trans) img_rot = np.fft.ifft2(np.fft.ifftshift(fshift_rot_center)).real img_rot = np.uint8(img_rot) cv2.imshow('gray', gray) cv2.imshow('img_trans', img_trans) cv2.imshow('img_rot', img_rot) cv2.waitKey(0) cv2.destroyAllWindows()

这段代码主要是对灰度图像进行图像平移和旋转,然后对平移和旋转后的图像进行傅里叶变换和傅里叶反变换,最后显示出平移和旋转后的图像。以下是代码改进的建议: 1. 路径中的反斜杠需要进行转义,或者使用正斜杠来代替,以避免出现路径错误。 2. 在使用傅里叶变换和傅里叶反变换时,可以使用numpy.fft.fft2()和numpy.fft.ifft2(),这样可以简化代码。 3. 在使用傅里叶变换和傅里叶反变换时,需要进行数据类型转换,可以使用numpy.uint8()将复数数组转换为无符号8位整数数组。 4. 在使用cv2.imshow()显示图像时,可以使用cv2.waitKey()来等待键盘输入,或者使用cv2.destroyAllWindows()来关闭所有窗口。 改进后的代码如下: ``` import cv2 import numpy as np img = cv2.imread('E:/数字图像处理实验/数字图像处理1.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) f = np.fft.fft2(gray) fshift = np.fft.fftshift(f) rows, cols = gray.shape crow, ccol = int(rows/2), int(cols/2) tx, ty = 50, 50 M = np.float32([[1, 0, tx], [0, 1, ty]]) fshift_trans = cv2.warpAffine(fshift, M, (cols, rows)) angle = 30 M = cv2.getRotationMatrix2D((ccol, crow), angle, 1) fshift_rot = cv2.warpAffine(fshift, M, (cols, rows)) fshift_center = fshift_trans[crow-100:crow+100, ccol-100:ccol+100] fshift_rot_center = fshift_rot[crow-100:crow+100, ccol-100:ccol+100] img_trans = np.fft.ifft2(fshift_center).real img_trans = np.uint8(img_trans) img_rot = np.fft.ifft2(fshift_rot_center).real img_rot = np.uint8(img_rot) cv2.imshow('gray', gray) cv2.imshow('img_trans', img_trans) cv2.imshow('img_rot', img_rot) cv2.waitKey(0) cv2.destroyAllWindows() ```

cv::Mat trans; cv::warpPerspective(img2, trans, H, cv::Size(img1.cols + img2.cols, img2.rows)); cv::Mat left_top = (cv::Mat_<double>(3, 1) << 0, 0, 1); cv::Mat points = H * left_top; int start = (int)points.at<double>(0, 0); cv::Mat trans_copy = trans.clone(); cv::Mat result = trans; cv::Mat roi = result(cv::Rect(0, 0, img1.cols, img1.rows)); img1.copyTo(roi);解析

这段代码是使用OpenCV库进行图像处理的,主要实现了图像融合的功能。 首先,将img2图像通过warpPerspective函数进行透视变换,得到变换后的图像trans。其中,参数H是一个3x3的变换矩阵,表示img2图像相对于img1图像的透视变换关系;Size(img1.cols+img2.cols, img2.rows)指定了变换后的图像大小。 接着,通过矩阵运算计算出img2图像左上角在变换后图像中的像素坐标,存储在points变量中。由于points是一个3x1的矩阵,所以通过at函数获取points中的第一个元素,并将其转换为整数,得到了img2图像在变换后图像中的左侧起始像素列数start。 然后,通过clone函数将变换后的图像trans复制一份到trans_copy中,以便后续操作不影响原始图像。接着,将result变量初始化为变换后的图像trans,并通过ROI(Region of Interest)机制获取result中左上角大小与img1相同的区域roi。最后,通过copyTo函数将img1图像复制到roi区域中,完成了图像融合的过程。

相关推荐

最新推荐

recommend-type

NR网络拒绝码-5gsm_cause = 29 (0x1d) (User authentication failed).docx

从3GPP协议和UE端行为分析5G gsm cause #29的网络问题
recommend-type

基于STM32通过PWM驱动直流电机

工程代码基于STM32F103C8T6,使用PWM输出驱动电机,电机驱动使用TB6612,通过按键控制电机速度,并且速度通过OLED显示屏进行显示 使用到的硬件:STM32F103C8T6最小系统板,四针脚OLED显示屏,直流电机,按键,TB6612电机驱动模块
recommend-type

最新微信文章编辑器排版工具程序源码.rar

最新微信文章编辑器排版工具程序源码.rar最新微信文章编辑器排版工具程序源码.rar最新微信文章编辑器排版工具程序源码.rar
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种