【问题描述】编程实现K-means算法,对平面坐标上的点进行聚类 【输入形式】输入有多行,第1行3个整数,依次是N,M,K,N为点的个数,M为坐标数,K为聚类数,下面N行输入N个点的坐标,最后1行输入K个点的编号,这K个点作为初始的聚类中心 【输出形式】输出有K行,每行输出该类中的点的编号 【样例输入】 11 2 3 2 10 2 5 8 4 5 8 7 5 6 4 1 2 4 9 7 3 1 3 3 9 1 4 7 【样例输出】 cluster1:1,4,8,11 cluster2:3,5,6,9 cluster3:2,7,10用c++编写

时间: 2024-01-04 22:02:06 浏览: 174
以下是使用 C++ 实现 K-means 算法的代码,可以参考一下: ```c++ #include <iostream> #include <vector> #include <cmath> #include <algorithm> using namespace std; // Calculate Euclidean distance between two points double distance(const vector<double>& x, const vector<double>& y) { double d = 0.0; for (int i = 0; i < x.size(); i++) { d += pow(x[i] - y[i], 2); } return sqrt(d); } // Assign each data point to nearest centroid void assign_cluster(const vector<vector<double>>& data, const vector<vector<double>>& centroids, vector<int>& labels) { for (int i = 0; i < data.size(); i++) { double min_dist = INFINITY; int min_index = 0; for (int j = 0; j < centroids.size(); j++) { double d = distance(data[i], centroids[j]); if (d < min_dist) { min_dist = d; min_index = j; } } labels[i] = min_index; } } // Update centroids based on current cluster labels void update_centroids(const vector<vector<double>>& data, const vector<int>& labels, vector<vector<double>>& centroids) { vector<vector<double>> new_centroids(centroids.size(), vector<double>(data[0].size(), 0.0)); vector<int> counts(centroids.size(), 0); for (int i = 0; i < data.size(); i++) { int c = labels[i]; for (int j = 0; j < data[i].size(); j++) { new_centroids[c][j] += data[i][j]; } counts[c]++; } for (int i = 0; i < centroids.size(); i++) { if (counts[i] > 0) { for (int j = 0; j < centroids[i].size(); j++) { centroids[i][j] = new_centroids[i][j] / counts[i]; } } } } // K-means clustering algorithm void kmeans(const vector<vector<double>>& data, int k, vector<int>& labels, vector<vector<double>>& centroids) { // Initialize centroids randomly centroids = vector<vector<double>>(k, vector<double>(data[0].size(), 0.0)); for (int i = 0; i < k; i++) { centroids[i] = data[rand() % data.size()]; } // Initialize cluster labels labels = vector<int>(data.size(), 0); while (true) { // Assign each data point to nearest centroid assign_cluster(data, centroids, labels); // Update centroids vector<vector<double>> old_centroids = centroids; update_centroids(data, labels, centroids); // Check for convergence bool converged = true; for (int i = 0; i < centroids.size(); i++) { if (distance(old_centroids[i], centroids[i]) > 1e-6) { converged = false; break; } } if (converged) { break; } } } // Print cluster labels void print_clusters(const vector<int>& labels) { vector<vector<int>> clusters(labels.size()); for (int i = 0; i < labels.size(); i++) { clusters[labels[i]].push_back(i + 1); } for (int i = 0; i < clusters.size(); i++) { cout << "cluster" << i + 1 << ":"; for (int j = 0; j < clusters[i].size(); j++) { cout << clusters[i][j]; if (j < clusters[i].size() - 1) { cout << ","; } } cout << endl; } } // Main function int main() { // Read input data int n, m, k; cin >> n >> m >> k; vector<vector<double>> data(n, vector<double>(m)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cin >> data[i][j]; } } vector<int> initial_centroids(k); for (int i = 0; i < k; i++) { cin >> initial_centroids[i]; } // Run K-means algorithm vector<int> labels; vector<vector<double>> centroids; kmeans(data, k, labels, centroids); // Print cluster labels print_clusters(labels); return 0; } ``` 该程序也读入输入数据,包括点的个数、坐标数、聚类数、所有点的坐标和初始聚类中心的编号,然后使用 K-means 算法进行聚类,输出每个聚类中的点的编号。注意,这里使用 vector 容器进行数据存储和操作,需要包含头文件 `<vector>`。

相关推荐

最新推荐

recommend-type

Python用K-means聚类算法进行客户分群的实现

本教程将详细介绍如何使用Python中的K-means算法对超市客户数据进行聚类分析。 首先,我们要明确项目背景。假设你运营一个名为“Supermarket Mall”的超市,你收集了会员卡用户的数据,包括客户ID、性别、年龄、年...
recommend-type

python 代码实现k-means聚类分析的思路(不使用现成聚类库)

本篇文章探讨的是如何不依赖现成的聚类库(如scikit-learn)手动实现K-means算法。 ### 一、实验目标 1. 应用K-means模型进行聚类,通过改变类别个数K,观察并分析聚类效果。 2. 将数据集按8:2的比例随机划分为训练...
recommend-type

人工智能实验K聚类算法实验报告.docx

《人工智能实验:K聚类算法实现与理解》 K聚类算法是数据挖掘和机器学习领域中常用的一种无监督学习方法,它通过寻找数据的内在结构,将数据集中的对象分成若干类别,使得同一类别的对象具有较高的相似性,而不同...
recommend-type

面向多场景应用的光网络通感一体化架构和关键技术方案研究.pdf

面向多场景应用的光网络通感一体化架构和关键技术方案研究
recommend-type

基于Vue框架的Digital Twin开发设计源码

该项目是基于Vue框架的Digital Twin开发设计源码,由38个文件组成,涉及TypeScript、JavaScript、Vue、CSS、HTML等多种编程语言,包括9个TypeScript文件、6个JavaScript文件、5个JSON文件、5个Vue文件、3个SVG文件、2个Markdown文件、2个WebAssembly文件、1个Git忽略文件、1个HTML文件和1个CSS文件。该源码旨在提供大学生在线学术交流的平台,助力学术创新与协作。
recommend-type

IPQ4019 QSDK开源代码资源包发布

资源摘要信息:"IPQ4019是高通公司针对网络设备推出的一款高性能处理器,它是为需要处理大量网络流量的网络设备设计的,例如无线路由器和网络存储设备。IPQ4019搭载了强大的四核ARM架构处理器,并且集成了一系列网络加速器和硬件加密引擎,确保网络通信的速度和安全性。由于其高性能的硬件配置,IPQ4019经常用于制造高性能的无线路由器和企业级网络设备。 QSDK(Qualcomm Software Development Kit)是高通公司为了支持其IPQ系列芯片(包括IPQ4019)而提供的软件开发套件。QSDK为开发者提供了丰富的软件资源和开发文档,这使得开发者可以更容易地开发出性能优化、功能丰富的网络设备固件和应用软件。QSDK中包含了内核、驱动、协议栈以及用户空间的库文件和示例程序等,开发者可以基于这些资源进行二次开发,以满足不同客户的需求。 开源代码(Open Source Code)是指源代码可以被任何人查看、修改和分发的软件。开源代码通常发布在公共的代码托管平台,如GitHub、GitLab或SourceForge上,它们鼓励社区协作和知识共享。开源软件能够通过集体智慧的力量持续改进,并且为开发者提供了一个测试、验证和改进软件的机会。开源项目也有助于降低成本,因为企业或个人可以直接使用社区中的资源,而不必从头开始构建软件。 U-Boot是一种流行的开源启动加载程序,广泛用于嵌入式设备的引导过程。它支持多种处理器架构,包括ARM、MIPS、x86等,能够初始化硬件设备,建立内存空间的映射,从而加载操作系统。U-Boot通常作为设备启动的第一段代码运行,它为系统提供了灵活的接口以加载操作系统内核和文件系统。 标题中提到的"uci-2015-08-27.1.tar.gz"是一个开源项目的压缩包文件,其中"uci"很可能是指一个具体项目的名称,比如U-Boot的某个版本或者是与U-Boot配置相关的某个工具(U-Boot Config Interface)。日期"2015-08-27.1"表明这是该项目的2015年8月27日的第一次更新版本。".tar.gz"是Linux系统中常用的归档文件格式,用于将多个文件打包并进行压缩,方便下载和分发。" 描述中复述了标题的内容,强调了文件是关于IPQ4019处理器的QSDK资源,且这是一个开源代码包。此处未提供额外信息。 标签"软件/插件"指出了这个资源的性质,即它是一个软件资源,可能包含程序代码、库文件或者其他可以作为软件一部分的插件。 在文件名称列表中,"uci-2015-08-27.1"与标题保持一致,表明这是一个特定版本的软件或代码包。由于实际的文件列表中只提供了这一项,我们无法得知更多的文件信息,但可以推测这是一个单一文件的压缩包。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【PDF表格创建与编辑】:使用Apache PDFBox和iText库制作表格,表格处理不求人

![java 各种pdf处理常用库介绍与使用](https://img-blog.csdnimg.cn/img_convert/6ae15afdef45b1d8fe6d289f0065d18c.png) # 1. PDF表格创建与编辑概述 在当今数字化时代,PDF格式因其可移植性和可维护性成为了电子文档的首选。在诸多应用场景中,表格作为一种重要的信息传递工具,其创建与编辑的需求日益增长。本章节将为读者提供一个关于PDF表格创建与编辑的概述,为后续章节中使用Apache PDFBox和iText库进行深入探讨奠定基础。 ## 1.1 PDF表格的作用与重要性 PDF表格在商务沟通、数据分析
recommend-type

python输出txt文件

在Python中,你可以使用内置的`open()`函数来创建和写入TXT文件。下面是一个简单的例子: ```python # 打开文件(如果不存在则创建) with open('example.txt', 'w') as file: # 写入文本内容 file.write('这是你要写入的内容') # 如果你想追加内容而不是覆盖原有文件 # 使用 'a' 模式(append) # with open('example.txt', 'a') as file: # file.write('\n这是追加的内容') # 关闭文件时会自动调用 `close()` 方法,但使
recommend-type

高频组电赛必备:掌握数字频率合成模块要点

资源摘要信息:"2022年电赛 高频组必备模块 数字频率合成模块" 数字频率合成(DDS,Direct Digital Synthesis)技术是现代电子工程中的一种关键技术,它允许通过数字方式直接生成频率可调的模拟信号。本模块是高频组电赛参赛者必备的组件之一,对于参赛者而言,理解并掌握其工作原理及应用是至关重要的。 本数字频率合成模块具有以下几个关键性能参数: 1. 供电电压:模块支持±5V和±12V两种供电模式,这为用户提供了灵活的供电选择。 2. 外部晶振:模块自带两路输出频率为125MHz的外部晶振,为频率合成提供了高稳定性的基准时钟。 3. 输出信号:模块能够输出两路频率可调的正弦波信号。其中,至少有一路信号的幅度可以编程控制,这为信号的调整和应用提供了更大的灵活性。 4. 频率分辨率:模块提供的频率分辨率为0.0291Hz,这样的精度意味着可以实现非常精细的频率调节,以满足高频应用中的严格要求。 5. 频率计算公式:模块输出的正弦波信号频率表达式为 fout=(K/2^32)×CLKIN,其中K为设置的频率控制字,CLKIN是外部晶振的频率。这一计算方式表明了频率输出是通过编程控制的频率控制字来设定,从而实现高精度的频率合成。 在高频组电赛中,参赛者不仅需要了解数字频率合成模块的基本特性,还应该能够将这一模块与其他模块如移相网络模块、调幅调频模块、AD9854模块和宽带放大器模块等结合,以构建出性能更优的高频信号处理系统。 例如,移相网络模块可以实现对信号相位的精确控制,调幅调频模块则能够对信号的幅度和频率进行调整。AD9854模块是一种高性能的DDS芯片,可以用于生成复杂的波形。而宽带放大器模块则能够提供足够的增益和带宽,以保证信号在高频传输中的稳定性和强度。 在实际应用中,电赛参赛者需要根据项目的具体要求来选择合适的模块组合,并进行硬件的搭建与软件的编程。对于数字频率合成模块而言,还需要编写相应的控制代码以实现对K值的设定,进而调节输出信号的频率。 交流与讨论在电赛准备过程中是非常重要的。与队友、指导老师以及来自同一领域的其他参赛者进行交流,不仅可以帮助解决技术难题,还可以相互启发,激发出更多创新的想法和解决方案。 总而言之,对于高频组的电赛参赛者来说,数字频率合成模块是核心组件之一。通过深入了解和应用该模块的特性,结合其他模块的协同工作,参赛者将能够构建出性能卓越的高频信号处理设备,从而在比赛中取得优异成绩。