请用python,在给定手写数字数据集,采用如下全连接神经网络进行分类。输入层784(28*28)个节点,隐层12个节点(包含偏置项),输出层10个节点(包含偏置项),隐层和输出层均采用sigmoid激活函数,损失函数为均方损失函数。采用标准正态分布初始化权重和阈值参数,梯度下降最大迭代次数设置为1000,画出学习率为0.001,0.005,0.01时模型的损失函数迭代曲线,算出三种学习率模型在测试集上的精度(accuracy)

时间: 2023-06-03 22:07:06 浏览: 51
好的,我会根据您的要求进行回答。以下是回答您的问题: 请用 Python,在给定手写数字数据集,采用如下全连接神经网络进行分类。输入层 784(28*28)个节点,隐层 12 个节点(包含偏置项),输出层 10 个节点(包含偏置项),隐层和输出层均采用 sigmoid 激活函数,损失函数为均方损失函数。采用标准正态分布初始化权重和阈值参数,梯度下降最大迭代次数设置为 1000,画出学习率为 0.001,0.005,0.01 时模型的损失函数迭代曲线,算出三种学习率模型在测试集上的精度(accuracy) 首先,我们需要加载手写数字数据集,可以使用 MNIST 数据集。具体代码如下: ```python from tensorflow.keras.datasets import mnist (X_train, y_train), (X_test, y_test) = mnist.load_data() ``` 接下来,我们需要对数据进行预处理,将图像数据转换成一维向量,并进行归一化处理,具体代码如下: ```python import numpy as np X_train = X_train.reshape(X_train.shape[0], -1) / 255 X_test = X_test.reshape(X_test.shape[0], -1) / 255 ``` 然后,我们可以开始建立模型,具体代码如下: ```python from tensorflow import keras model = keras.Sequential([ keras.layers.Dense(12, input_shape=(784,), activation='sigmoid'), keras.layers.Dense(10, activation='sigmoid') ]) model.compile(optimizer='sgd', loss='mse', metrics=['accuracy']) ``` 上面的代码中,我们使用了 `keras.Sequential()` 来建立模型,其中包含了两个全连接层,分别是具有 12 个节点和 10 个节点的隐藏层和输出层,两层的激活函数都是 sigmoid 函数。另外,我们还对模型进行了编译,使用了随机梯度下降(SGD)作为优化器,均方损失函数作为损失函数,准确率(accuracy)作为衡量指标。 为了比较学习率不同情况下的模型训练效果,我们需要定义不同的学习率,并分别进行训练,具体代码如下: ```python learning_rates = [0.001, 0.005, 0.01] loss_values = [] acc_values = [] for lr in learning_rates: model.compile(optimizer=keras.optimizers.SGD(lr=lr), loss='mse', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=1000, batch_size=32, verbose=0) loss_values.append(history.history['loss']) _, accuracy = model.evaluate(X_test, y_test, verbose=0) acc_values.append(accuracy) ``` 上面的代码中,我们使用了不同的学习率,并对模型进行了训练,训练时,我们将模型的最大迭代次数设置为 1000,并将批量大小设置为 32,同时,我们还记录了每个模型在训练过程中的损失函数值,并使用测试集进行了模型的评估,记录模型在测试集上的精度(accuracy)。 最后,我们可以使用 Matplotlib 库来绘制三种不同学习率下的模型损失函数图像,具体代码如下: ```python import matplotlib.pyplot as plt epochs = range(1, 1001) color = ['r', 'b', 'g'] for i in range(len(loss_values)): plt.plot(epochs, loss_values[i], color[i], label='lr={}'.format(learning_rates[i])) plt.title('Model Loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() ``` 上面的代码中,我们使用了 Matplotlib 库来进行绘图,绘制了三种学习率下的损失函数曲线。具体来说,我们将训练的迭代次数作为 x 轴,将每次训练的损失函数值作为 y 轴,使用不同的颜色标注不同学习率对应的曲线,并在图例中展示对应的颜色和学习率。 最后,我们需要计算模型在测试集上的准确率,具体代码如下: ```python for i in range(len(acc_values)): print('lr={}, accuracy={:.4f}'.format(learning_rates[i], acc_values[i])) ``` 上面的代码中,我们将三种学习率的模型在测试集上的精度输出到控制台,以展示不同学习率对模型训练效果的影响。 总的来说,以上是使用 Python 建立全连接神经网络的完整流程,可以根据您自己的需求进行自由修改和扩展。

相关推荐

最新推荐

recommend-type

Python实现Keras搭建神经网络训练分类模型教程

主要介绍了Python实现Keras搭建神经网络训练分类模型教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

python实现基于SVM手写数字识别功能

主要为大家详细介绍了python实现基于SVM手写数字识别功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

Python实现的三层BP神经网络算法示例

主要介绍了Python实现的三层BP神经网络算法,结合完整实例形式分析了Python三层BP神经网络算法的具体实现与使用相关操作技巧,需要的朋友可以参考下
recommend-type

Python实现识别手写数字 Python图片读入与处理

主要为大家详细介绍了Python实现识别手写数字,Python图片的读入与处理,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

手写数字识别(python底层实现)报告.docx

(1)认识MNIST数据集的数据格式,对MNIST数据集进行划分作为多层感知机的训练和测试数据; (2)利用python语言从零开始搭建多层感知机网络; (3) 通过调整参数提高多层感知机网络的准确度,并对实验结果进行评估...
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

ActionContext.getContext().get()代码含义

ActionContext.getContext().get() 是从当前请求的上下文对象中获取指定的属性值的代码。在ActionContext.getContext()方法的返回值上,调用get()方法可以获取当前请求中指定属性的值。 具体来说,ActionContext是Struts2框架中的一个类,它封装了当前请求的上下文信息。在这个上下文对象中,可以存储一些请求相关的属性值,比如请求参数、会话信息、请求头、应用程序上下文等等。调用ActionContext.getContext()方法可以获取当前请求的上下文对象,而调用get()方法可以获取指定属性的值。 例如,可以使用 Acti
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。