c++写Yolov5TRTContext推理
时间: 2023-06-29 17:02:57 浏览: 117
Yolov5TRTContext 是一个基于 TensorRT 的 YOLOv5 推理框架,它可以在 NVIDIA GPU 上进行高效的目标检测。下面是使用 C++ 编写 Yolov5TRTContext 推理的步骤:
1. 安装 TensorRT。
2. 下载 YOLOv5 模型文件。
3. 使用 TensorRT 的 Python API 将 YOLOv5 模型转换为 TensorRT 引擎。这个过程可以在 Python 中完成,示例代码如下:
```python
import tensorrt as trt
import sys
def build_engine(onnx_file_path, engine_file_path):
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1 << 30 # Your workspace size
builder.max_batch_size = 1 # Your max batch size
with open(onnx_file_path, 'rb') as model:
parser.parse(model.read())
engine = builder.build_cuda_engine(network)
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
return engine
if __name__ == '__main__':
onnx_file_path = sys.argv[1]
engine_file_path = sys.argv[2]
build_engine(onnx_file_path, engine_file_path)
```
4. 在 C++ 中加载 TensorRT 引擎文件,创建 Yolov5TRTContext 对象,然后进行推理。示例代码如下:
```c++
#include "yolov5_trt.h"
#include <iostream>
#include <fstream>
int main(int argc, char** argv) {
if (argc != 4) {
std::cerr << "Usage: ./yolov5_trt input.bin engine.trt output.bin\n";
return -1;
}
std::ifstream input(argv[1], std::ios::binary);
std::ofstream output(argv[3], std::ios::binary);
if (!input || !output) {
std::cerr << "Failed to open file\n";
return -1;
}
int input_size = 640 * 640 * 3;
int output_size = 20 * 7;
char* input_buf = new char[input_size];
char* output_buf = new char[output_size];
input.read(input_buf, input_size);
Yolov5TRTContext context;
context.load_engine(argv[2]);
context.do_inference(input_buf, output_buf);
output.write(output_buf, output_size);
delete[] input_buf;
delete[] output_buf;
return 0;
}
```
其中,yolov5_trt.h 头文件包含了 Yolov5TRTContext 类的定义,示例代码如下:
```c++
#include "NvInferRuntime.h"
class Yolov5TRTContext {
public:
Yolov5TRTContext();
~Yolov5TRTContext();
bool load_engine(const char* engine_path);
void do_inference(const char* input, char* output);
private:
nvinfer1::ICudaEngine* engine_;
nvinfer1::IExecutionContext* context_;
cudaStream_t stream_;
};
```
具体实现可以参考 TensorRT 的官方文档和源代码。
阅读全文