给出一般pytorch实现训练神经网络格式
时间: 2023-11-12 21:06:16 浏览: 77
Pytorch实现神经网络的分类方式
以下是一般pytorch实现训练神经网络的格式:
1. 导入相关库和数据集
```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
# 导入数据集
train_data = YourTrainDataset()
valid_data = YourValidDataset()
test_data = YourTestDataset()
# 创建数据加载器
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
valid_loader = DataLoader(valid_data, batch_size=32)
test_loader = DataLoader(test_data, batch_size=32)
```
2. 定义网络模型
```
class YourNet(nn.Module):
def __init__(self):
super(YourNet, self).__init__()
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = x.view(-1, 784)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
net = YourNet()
```
3. 定义损失函数和优化器
```
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
```
4. 训练网络
```
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
# 将参数梯度清零
optimizer.zero_grad()
# 前向传播、计算损失、反向传播、更新参数
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 统计损失
running_loss += loss.item()
# 计算平均损失并输出
train_loss = running_loss / len(train_loader)
print('Epoch %d, training loss: %.3f' % (epoch+1, train_loss))
```
5. 测试网络
```
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %.2f%%' % (100 * correct / total))
```
6. 保存和加载模型
```
# 保存模型
torch.save(net.state_dict(), 'your_net.pth')
# 加载模型
net = YourNet()
net.load_state_dict(torch.load('your_net.pth'))
```
阅读全文