Inception score python
时间: 2023-06-21 16:07:17 浏览: 91
inception-score-pytorch:pytorch中GAN的初始得分
Inception score is a metric used to evaluate the quality of generated images. It measures the diversity and quality of generated images by calculating the entropy of class predictions of the Inception model trained on ImageNet dataset.
Here's the Python code to calculate Inception score using TensorFlow:
```python
import tensorflow as tf
import numpy as np
def get_inception_score(images, splits=10):
# Load Inception-v3 model
inception_model = tf.keras.applications.InceptionV3(include_top=False, pooling='avg')
# Preprocess images
images = tf.keras.applications.inception_v3.preprocess_input(images)
# Get predictions from Inception model
preds = inception_model.predict(images)
# Calculate entropy of class predictions
scores = []
for i in range(splits):
part = preds[i * (preds.shape[0] // splits): (i + 1) * (preds.shape[0] // splits), :]
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, axis=0), 0)))
kl = np.mean(np.sum(kl, axis=1))
scores.append(np.exp(kl))
# Calculate mean and standard deviation of scores
is_mean, is_std = np.mean(scores), np.std(scores)
return is_mean, is_std
```
You can use this function to calculate the Inception score for generated images. The `images` parameter should be a numpy array of shape `(num_images, height, width, channels)`. The `splits` parameter determines the number of splits used to calculate the score. A higher number of splits leads to more accurate scores, but also increases computation time.
阅读全文