设x(t)=u(t)-u(t-1), h(t)=x(t)*x(t)。为了与近似计算的结果作比较, (1)用解析法求出y(t)=x(t)*h(t)
时间: 2023-10-20 08:08:19 浏览: 149
根据卷积的定义,可以得到:
y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ
其中,h(t) = x(t)*x(t) = (u(t)-u(t-1))*(u(t)-u(t-1)) = u(t)*u(t) - 2*u(t)*u(t-1) + u(t-1)*u(t-1)
将h(t)代入y(t)的式子中,得到:
y(t) = ∫x(τ)h(t-τ)dτ = ∫[u(τ)-u(τ-1)][u(t-τ)*u(t-τ) - 2*u(t-τ)*u(t-τ-1) + u(t-τ-1)*u(t-τ-1)]dτ
对上式进行分段讨论:
当τ <= t-1时,有u(t-τ) = 1,u(t-τ-1) = 0,得到:
y(t) = ∫[u(τ)-u(τ-1)]u(t-τ)*u(t-τ)dτ = ∫u(τ)*u(t-τ)dτ
当t-1 < τ <= t时,有u(t-τ) = u(t),u(t-τ-1) = 1,得到:
y(t) = -2∫[u(τ)-u(τ-1)]u(t-τ)*u(t-τ-1)dτ = -2∫u(t-τ)*u(t-τ-1)dτ
当τ > t时,有u(t-τ) = 0,u(t-τ-1) = -1,得到:
y(t) = ∫[u(τ)-u(τ-1)]u(t-τ-1)*u(t-τ-1)dτ = ∫u(τ-1)*u(t-τ-1)dτ
综合以上三种情况,可以得到:
y(t) = ∫u(τ)*u(t-τ)dτ - 2∫u(t-τ)*u(t-τ-1)dτ + ∫u(τ-1)*u(t-τ-1)dτ
对于第一项,可以将u(τ)*u(t-τ)表示为u(τ)*u(t) - u(τ)*u(t-1),得到:
∫u(τ)*u(t-τ)dτ = ∫u(τ)*u(t)dτ - ∫u(τ)*u(t-1)dτ = t - (t-1) = 1
对于第二项,可以将u(t-τ)*u(t-τ-1)表示为u(t)*[u(τ)-u(τ-1)]*u(τ-1),得到:
∫u(t-τ)*u(t-τ-1)dτ = u(t)*∫[u(τ)-u(τ-1)]u(τ-1)dτ = u(t)
对于第三项,可以将u(τ-1)*u(t-τ-1)表示为u(t-1)*u(t) - u(τ)*u(t) - u(t-1)*u(τ-1) + u(τ)*u(τ-1),得到:
∫u(τ-1)*u(t-τ-1)dτ = (t-1)*1 - t*(t-1)/2 - (t-1)*1 + t*(t-1)/2 = 1/2
综合以上三项,得到:
y(t) = 1 - 2*u(t) + 1/2 = 1/2 - 2*u(t)
因此,解析法求出的y(t)为:
y(t) = 1/2 - 2*u(t)
阅读全文