基于stm32f103r6的温湿度检测

时间: 2023-10-29 20:06:12 浏览: 32
好的,基于STM32F103R6微控制器的温湿度检测方案如下: 硬件设计: 1. STM32F103R6微控制器:采用ARM Cortex-M3内核,具有高性能、低功耗、丰富的外设资源等优点。 2. 温湿度传感器:可以选择DHT11、DHT22、AM2302等传感器模块,这些模块通过数字接口(例如GPIO)与STM32微控制器相连接。 3. OLED显示屏:可以选择0.96英寸OLED显示屏,通过I2C接口与STM32微控制器相连接。 软件设计: 1. 采集数据:使用STM32F103R6的GPIO模块和定时器模块,实现对温湿度传感器模块的数据采集和定时读取。 2. 数据处理:使用STM32F103R6的ADC模块,将模拟输出转换成数字信号,并进行数据处理(例如转换为温度和湿度值)。 3. 展示数据:使用OLED显示屏,将温湿度值显示在屏幕上。 总体来说,基于STM32F103R6的温湿度检测方案是简单可行的,只需少量的硬件和软件开发经验就能够实现。如果您需要更详细的信息或有其他问题,请随时提出。
相关问题

基于stm32f103r6的dht11温湿度

基于stm32f103r6的dht11温湿度传感器可以通过串行通信协议来实现数据的采集和读取。首先,需要通过引脚连接将dht11传感器与stm32f103r6单片机进行连接,然后编写相应的程序来控制传感器并读取数据。 在程序中,需要配置stm32f103r6的串行通信接口(例如USART或SPI)来与dht11传感器进行通信,确保能够正确发送请求并接收传感器返回的数据。通过发送特定的指令给传感器,可以要求其测量当前的温度和湿度值,并将结果发送回单片机。 一旦接收到传感器返回的数据,程序需要进行相应的处理和解析,将原始数据转换为实际的温度和湿度数值。可以通过查阅dht11传感器的数据手册,了解数据格式和解析方法。 最后,将获取的温湿度数据通过单片机的显示屏、串口通信或其他方式进行输出,以便用户实时监测和记录温湿度信息。 需要注意的是,基于stm32f103r6的dht11温湿度传感器的设计需要考虑到时序控制、数据处理和通信协议等方面的问题,确保传感器能够稳定可靠地工作并输出准确的温湿度数值。同时,还需要考虑功耗、精度和实时性等方面的要求,以满足不同应用场景中的需求。

基于stm32f103r6的dht11的温湿度检测的代码及头h文件和c文件

以下是基于STM32F103R6的DHT11温湿度检测的代码、头文件和C文件。请注意,这是一个简单的示例,您需要根据您的具体硬件和需求进行适当的修改。 main.c: ``` #include "stm32f10x.h" #include "dht11.h" int main(void) { uint8_t temp, humi; SysTick_Init(); DHT11_Init(); while(1) { DHT11_Read_Data(&temp, &humi); // 处理温湿度数据 } } void SysTick_Init(void) { if(SysTick_Config(SystemCoreClock / 1000)) { while(1); } } void SysTick_Handler(void) { TimingDelay_Decrement(); } void Delay_ms(uint32_t nTime) { TimingDelay = nTime; while(TimingDelay != 0); } ``` dht11.h: ``` #ifndef __DHT11_H #define __DHT11_H #include "stm32f10x.h" // DHT11引脚定义 #define DHT11_PIN GPIO_Pin_8 #define DHT11_PORT GPIOB // 函数声明 void DHT11_Init(void); void DHT11_Start(void); uint8_t DHT11_Check_Response(void); uint8_t DHT11_Read_Byte(void); void DHT11_Read_Data(uint8_t *temp, uint8_t *humi); #endif ``` dht11.c: ``` #include "dht11.h" uint32_t TimingDelay; void DHT11_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(DHT11_PORT, &GPIO_InitStructure); GPIO_SetBits(DHT11_PORT, DHT11_PIN); Delay_ms(1000); // 等待1秒钟 } void DHT11_Start(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(DHT11_PORT, &GPIO_InitStructure); GPIO_ResetBits(DHT11_PORT, DHT11_PIN); Delay_ms(18); // 至少18ms GPIO_SetBits(DHT11_PORT, DHT11_PIN); } uint8_t DHT11_Check_Response(void) { uint8_t Response = 0; uint32_t TimeOut = 0; GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = DHT11_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(DHT11_PORT, &GPIO_InitStructure); while(GPIO_ReadInputDataBit(DHT11_PORT, DHT11_PIN)) { TimeOut++; Delay_ms(1); if(TimeOut > 100) { Response = 1; break; } } TimeOut = 0; while(!GPIO_ReadInputDataBit(DHT11_PORT, DHT11_PIN)) { TimeOut++; Delay_ms(1); if(TimeOut > 100) { Response = 1; break; } } TimeOut = 0; while(GPIO_ReadInputDataBit(DHT11_PORT, DHT11_PIN)) { TimeOut++; Delay_ms(1); if(TimeOut > 100) { Response = 1; break; } } return Response; } uint8_t DHT11_Read_Byte(void) { uint8_t i, j, byte = 0; for(j = 0; j < 8; j++) { while(!GPIO_ReadInputDataBit(DHT11_PORT, DHT11_PIN)); // 等待高电平 Delay_ms(40); // 40us if(GPIO_ReadInputDataBit(DHT11_PORT, DHT11_PIN)) { byte |= (1 << (7 - j)); } while(GPIO_ReadInputDataBit(DHT11_PORT, DHT11_PIN)); // 等待低电平 } return byte; } void DHT11_Read_Data(uint8_t *temp, uint8_t *humi) { uint8_t i, data[5], check_sum; DHT11_Start(); if(DHT11_Check_Response() == 1) { *temp = 0; *humi = 0; return; } for(i = 0; i < 5; i++) { data[i] = DHT11_Read_Byte(); } check_sum = data[0] + data[1] + data[2] + data[3]; if(check_sum != data[4]) { *temp = 0; *humi = 0; return; } *humi = data[0]; *temp = data[2]; } ``` 希望这个示例能对您有所帮助!
阅读全文

相关推荐

大家在看

recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
recommend-type

Solar-Wind-Hybrid-Power-plant_matlab_

hybrid solar wind farm using matlab
recommend-type

OZ9350 设计规格书

OZ9350 设计规格书
recommend-type

看nova-scheduler如何选择计算节点-每天5分钟玩转OpenStack

本节重点介绍nova-scheduler的调度机制和实现方法:即解决如何选择在哪个计算节点上启动instance的问题。创建Instance时,用户会提出资源需求,例如CPU、内存、磁盘各需要多少。OpenStack将这些需求定义在flavor中,用户只需要指定用哪个flavor就可以了。可用的flavor在System->Flavors中管理。Flavor主要定义了VCPU,RAM,DISK和Metadata这四类。nova-scheduler会按照flavor去选择合适的计算节点。VCPU,RAM,DISK比较好理解,而Metatdata比较有意思,我们后面会具体讨论。下面介绍nova-s
recommend-type

机器视觉选型计算概述-不错的总结

机器视觉选型计算概述-不错的总结

最新推荐

recommend-type

启明欣欣stm32f103rct6开发板原理图

STM32F103RCT6是一款基于ARM Cortex-M3内核的微控制器,由意法半导体(STM)生产。这款芯片具有高性能、低功耗的特点,适用于各种嵌入式应用,如工业控制、消费电子和通信设备等。启明欣欣STM32F103RCT6开发板提供了...
recommend-type

stm32f103数据手册

STM32F103是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M3内核的32位微控制器,属于STM32系列的中密度性能线产品。这款微控制器提供了64KB或128KB的闪存以及20KB的SRAM,适用于各种嵌入式应用,如...
recommend-type

STM32F103RET6TR中文数据手册.pdf

STM32F103RET6TR是一款基于ARM Cortex-M3内核的32位微控制器,由意法半导体(STMicroelectronics)生产。这款微控制器适用于一系列STM32F103型号,包括STM32F103RE、STM32F103ZE、STM32F103VE等。它拥有丰富的特性,...
recommend-type

基于STM32单片机流水灯仿真与程序设计

通过选择[P]菜单,添加所需元件,如电阻RES和LED-GREEN,以及STM32F103R6型号的单片机。 4. **Keil程序设计**:Keil是常用的C语言开发工具,支持STM32的μVision集成开发环境。在Keil中,我们需要编写C语言程序,...
recommend-type

STM32F103单片机系统时钟部分归纳

STM32F103单片机的系统时钟部分主要涉及到时钟源的选择和配置,这些时钟源对单片机的性能和功耗管理至关重要。STM32F103采用的是ARM Cortex-M3架构,其时钟控制系统称为RCC(Reset and Clock Control),它管理着...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"