回溯法求解流水作业调度问题算法步骤

时间: 2023-10-27 07:31:38 浏览: 232
回溯法求解流水作业调度问题的算法步骤如下: 1. 确定问题的决策变量和约束条件。流水作业调度问题的决策变量是各作业的顺序,约束条件是每个作业的前置作业必须全部完成。 2. 确定问题的搜索空间。对于n个作业的流水作业调度问题,搜索空间为n!,即所有可能的作业顺序。 3. 利用回溯法进行搜索。从第一个作业开始,搜索所有可能的下一个作业,直到找到一个可行解或者搜索完所有可能的解。如果找到可行解,则更新最优解;如果搜索完所有可能的解,回溯到上一级节点,继续搜索其他可能的解,直到找到最优解。 4. 制定剪枝策略。由于搜索空间的大小为n!,因此需要制定剪枝策略来减少搜索时间。常用的剪枝策略包括:约束传播、可行性剪枝、最优性剪枝等。 5. 最终输出最优解。当搜索结束时,输出找到的最优解。 需要注意的是,回溯法虽然可以求解流水作业调度问题,但是由于搜索空间的大小非常大,因此可能需要很长时间才能找到最优解。因此,在实际应用中,需要结合其他优化算法来提高求解效率。
相关问题

回溯法求解求解流水作业调度问题算法思路和时间复杂度分析

回溯法求解流水作业调度问题的算法思路如下: 1. 定义状态:每个状态包含两个信息,当前流水线上的作业序列和当前作业的完成时间。 2. 定义决策:在当前状态下,从未安排的作业序列中选择一个作业,加入到流水线上,并更新完成时间。 3. 定义剪枝条件:如果当前作业序列的完成时间已经超过了当前最优解,那么就不继续搜索该状态。 4. 定义终止条件:当所有作业都安排完毕时,更新最优解。 5. 回溯:回溯到上一个状态,选择下一个可行的决策。 时间复杂度分析:回溯法的时间复杂度一般较高,因为需要枚举所有可能的解。在流水作业调度问题中,一共有n个作业,每个作业可以被安排在m条流水线上,因此总共可能的解的数量是O(m^n)。因为需要计算每个解的完成时间,所以时间复杂度是O(m^n * n)。而实际运行的时间复杂度则取决于剪枝效果的好坏和具体实现方式的优化程度。

PTA回溯法求解流水作业调度问题

### 使用回溯法求解流水作业调度问题 #### 流水作业调度问题描述 给定 n 个作业要在两台机器上加工处理,每个作业都必须先由机器 M1 加工,然后再由机器 M2 加工。设第 i 个作业需占用机器 M1 的时间为 ai , 占用机器 M2 的时间为 bi 。现在要找出这 n 个作业的一个最优排列方案使得总完成时间最短。 #### 回溯法原理 回溯法是一种通过构建解空间树来尝试所有可能解决方案的方法,在每一步选择中做出尽可能好的决策并继续前进;如果发现当前路径无法得到更优的结果,则返回到前一状态重新选择其他可能性直到找到全局最优解[^1]。 #### 算法实现思路 为了应用回溯法于上述问题之中: - 定义一个函数 `backtrack` 接受参数为当前正在考虑安排哪个工作以及已经计算出来的部分成本。 - 对每一个未被分配的工作位置 k (k=0, ..., n),假设将其放在当前位置 j 上面,并更新相应的最早可用时间和累积花费。 - 如果所有的任务都被成功放置完毕,则记录下此时的成本作为候选答案之一。 - 当遍历结束之后比较各个保存下来的可行解取其中最小者即为我们所寻求的最佳排序方式。 下面是具体的 Python 实现代码: ```python import sys def flow_shop_scheduling(n, a, b): best_order = [] min_cost = float('inf') def backtrack(j, current_a_time, current_b_time, order, visited): nonlocal best_order, min_cost if j == n: cost = max(current_a_time + sum([a[i] for i in range(n)]), current_b_time + sum([b[i] for i in range(n)])) if cost < min_cost: min_cost = cost best_order[:] = order[:] return for i in range(n): if not visited[i]: next_a_time = current_a_time + a[i] next_b_time = max(current_b_time, next_a_time) + b[i] new_visited = list(visited) new_visited[i] = True backtrack( j + 1, next_a_time, next_b_time, order + [i], new_visited) initial_visited = [False]*n backtrack(0, 0, 0, [], initial_visited) return best_order, min_cost if __name__ == "__main__": # Example input data from the problem statement. num_jobs = int(input().strip()) processing_times_m1 = list(map(int, input().split())) processing_times_m2 = list(map(int, input().split())) optimal_sequence, minimum_completion_time = flow_shop_scheduling(num_jobs, processing_times_m1, processing_times_m2) print(f"Optimal sequence of jobs is {optimal_sequence}") print(f"The minimal completion time required to process all tasks on both machines sequentially is {minimum_completion_time}.") ``` 此程序读入一组测试数据后会输出最佳的任务序列及其对应的最少完工时刻。注意这里采用的是递归形式的回溯方法来进行搜索过程模拟。
阅读全文

相关推荐

最新推荐

recommend-type

作业调度问题(C语言版).doc

在贪心算法中,这一步骤是至关重要的,因为该策略直接决定了作业调度的效率和性能。 4. 分配函数:distribute函数则是将初始化和选择后的作业分配给相应的机器。该函数会根据特定的调度策略来决定作业的分配顺序和...
recommend-type

算法设计与分析(详细解析(含源代码))

在解决如迷宫问题、n皇后问题等优化问题时,回溯法能够有效地避免无效路径的探索。 6. **贪婪法**:贪婪算法遵循局部最优策略,每次选择当前看起来最优的选项,希望最终能得到全局最优解。这种算法在资源分配和调度...
recommend-type

Unity3D教程:游戏开发算法

在解决复杂的优化问题,如迷宫求解或棋盘游戏策略时,回溯法十分有效。 分治法是将大问题分解为小问题来解决,然后合并小问题的解得到大问题的解。在游戏开发中,例如图形渲染的分块算法,多线程并行计算,或解决...
recommend-type

0-1背包问题图文详解,包含源代码列程序

0-1背包问题是一种经典的优化问题,用于求解在有限的...此外,该问题的解决方案也可以启发其他优化算法,如贪心策略和分支限界法。理解并掌握0-1背包问题及其解法,对于处理资源分配、任务调度等实际问题具有重要意义。
recommend-type

【机器人】将ChatGPT飞书机器人钉钉机器人企业微信机器人公众号部署到vercel及docker_pgj.zip

【机器人】将ChatGPT飞书机器人钉钉机器人企业微信机器人公众号部署到vercel及docker_pgj
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。