输出所有小于N位的完全数matlab
时间: 2024-03-22 22:42:31 浏览: 44
好的,以下是MATLAB代码实现:
```matlab
function perfect_numbers(N)
% 输出所有小于N位的完全数
for n = 2:N
m = 2^(n-1)*(2^n - 1);
if isprime(2^n - 1) && isprime(m)
fprintf('%d\n', m);
end
end
end
```
使用方法:在MATLAB命令行中输入 `perfect_numbers(N)`,其中N为位数上限。例如,输入 `perfect_numbers(4)` 将输出所有小于4位的完全数。
相关问题
matlab输入正整数N,输出所有小于等于N的完全数
好的,完全数是指其所有因子(不包括本身)之和恰好等于自身的正整数。以下是一个简单的 Matlab 代码实现:
```matlab
N = input('请输入正整数N:');
fprintf('小于等于%d的完全数有:\n', N);
for i = 1:N
sum = 0;
for j = 1:i-1
if mod(i,j) == 0
sum = sum + j;
end
end
if sum == i
fprintf('%d\n', i);
end
end
```
代码中使用两层循环,第一层循环从1到N依次遍历每个正整数,第二层循环计算当前正整数的因子之和。如果因子之和等于这个正整数,就说明它是完全数,将其输出即可。
matlab中输入正整数N,输出所有小于等于N的完全数,给出三种方法
方法一:暴力枚举
完全数是指除本身之外的所有因子之和等于本身的正整数。因此,我们可以通过枚举每个小于等于N的正整数,然后判断其是否为完全数,如果是则输出。具体实现如下:
```matlab
N = input('请输入正整数N:');
for i = 1:N
sum = 0;
for j = 1:i-1
if mod(i,j) == 0
sum = sum + j;
end
end
if sum == i
disp(i);
end
end
```
方法二:优化枚举
在方法一中,我们对于每个小于等于N的正整数都枚举了一遍其所有的因子,这样效率较低。我们可以对于每个小于等于N的正整数,只枚举其所有小于等于sqrt(i)的因子即可。具体实现如下:
```matlab
N = input('请输入正整数N:');
for i = 1:N
sum = 0;
for j = 1:sqrt(i)
if mod(i,j) == 0
sum = sum + j + i/j;
end
end
sum = sum - i; % 减去本身
if sum == i
disp(i);
end
end
```
方法三:筛选法
在方法二中,我们对于每个小于等于N的正整数都枚举了一遍其所有小于等于sqrt(i)的因子。我们可以使用筛选法,预处理出每个小于等于N的正整数的因子和,然后直接判断即可。具体实现如下:
```matlab
N = input('请输入正整数N:');
sum = zeros(1,N);
for i = 1:N
for j = 1:i-1
if mod(i,j) == 0
sum(i) = sum(i) + j;
end
end
end
for i = 1:N
if sum(i) == i
disp(i);
end
end
```
以上是三种实现方法,方法二和方法三的效率比方法一要高。
阅读全文
相关推荐
















