def data_split(sequence, n_timestamp): subset = [] for i in range(len(sequence)): end_ix = i + n_timestamp if end_ix > len(sequence) - 1: break seq = sequence[i:end_ix+1].reshape(n_timestamp+1,) subset.append(seq) subset = np.array(subset, dtype='float32') return subset train_data = data_split(training_set_scaled, n_timestamp) # train_data = train_data.reshape(train_data.shape[0], train_data.shape[1]) test_data = data_split(testing_set_scaled, n_timestamp) # test_data = test_data.reshape(test_data.shape[0], test_data.shape[1]) print(train_data.shape, test_data.shape) print(train_data[3492])
时间: 2023-11-30 07:02:25 浏览: 72
generate_sequence.rar_generate Sequence_generate_sequence_markov
这段代码中,首先调用了上面定义的data_split函数将缩放后的训练集和测试集转换成监督学习问题的输入和输出特征。接下来,将train_data和test_data打印出来以检查它们的形状是否正确。最后一行代码打印出了train_data中第3492个样本,以便您检查数据是否正确。如果您需要查看其他样本,可以将train_data中的索引号替换为其他数字即可。请注意,由于train_data和test_data中的每个样本包含n_timestamp+1个值,因此它们的第二维应该是n_timestamp+1。请问您还有其他问题吗?
阅读全文