基于keil5和stm32的程序代码

时间: 2023-07-29 17:08:03 浏览: 307
以下是一个使用 Keil5 和 STM32 的浊度传感器程序的源码,仅供参考: ```c // 引入必要的头文件 #include "stm32f4xx.h" #include "stm32f4xx_rcc.h" #include "stm32f4xx_gpio.h" #include "stm32f4xx_adc.h" #include "stm32f4xx_dma.h" // 定义 ADC 采样缓冲区大小 #define ADC_BUFFER_SIZE 1024 // 定义 ADC 采样缓冲区 uint16_t adc_buffer[ADC_BUFFER_SIZE]; // 定义 DMA 配置结构体 DMA_InitTypeDef DMA_InitStructure; // 定义 ADC 配置结构体 ADC_InitTypeDef ADC_InitStructure; // 定义 GPIO 配置结构体 GPIO_InitTypeDef GPIO_InitStructure; // 定义时钟配置函数 void RCC_Configuration(void) { // 使能 GPIOA 和 DMA2 时钟 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE); // 使能 ADC1 时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); } // 定义 GPIO 配置函数 void GPIO_Configuration(void) { // 配置 PA0 为模拟输入模式 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); } // 定义 DMA 配置函数 void DMA_Configuration(void) { // 配置 DMA2_Stream0 DMA_InitStructure.DMA_Channel = DMA_Channel_0; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t) & (ADC1->DR); DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_BufferSize = ADC_BUFFER_SIZE; DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t) & adc_buffer; DMA_Init(DMA2_Stream0, &DMA_InitStructure); // 使能 DMA2_Stream0 DMA_Cmd(DMA2_Stream0, ENABLE); } // 定义 ADC 配置函数 void ADC_Configuration(void) { // 关闭 ADC1 ADC_Cmd(ADC1, DISABLE); // 等待 ADC1 关闭 while(ADC_GetFlagStatus(ADC1, ADC_FLAG_ADON)); // 配置 ADC1 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; ADC_InitStructure.ADC_NbrOfConversion = 1; ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_Init(ADC1, &ADC_InitStructure); // 配置 ADC1 通道 0 ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_480Cycles); // 使能 DMA 传输 ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE); // 使能 ADC1 ADC_Cmd(ADC1, ENABLE); // 启动 ADC1 校准 ADC_StartCalibration(ADC1); // 等待 ADC1 校准完成 while(ADC_GetCalibrationStatus(ADC1) != RESET); // 启动 ADC1 转换 ADC_SoftwareStartConv(ADC1); } int main(void) { // 配置时钟 RCC_Configuration(); // 配置 GPIO GPIO_Configuration(); // 配置 DMA DMA_Configuration(); // 配置 ADC ADC_Configuration(); while(1) { // 等待 DMA 传输完成 while(!DMA_GetFlagStatus(DMA2_Stream0, DMA_FLAG_TCIF0)); // 重置 DMA 传输完成标志 DMA_ClearFlag(DMA2_Stream0, DMA_FLAG_TCIF0); // 计算浊度 uint32_t sum = 0; for(int i = 0; i < ADC_BUFFER_SIZE; i++) { sum += adc_buffer[i]; } float avg = (float)sum / (float)ADC_BUFFER_SIZE; float voltage = (avg / 4096) * 3.3; // 假设使用 3.3V 电压供电 float resistance = (3.3 / voltage - 1) * 10000; // 假设使用 10K 的电阻 float turbidity = 1000 * (1 / (0.014 * resistance + 0.005)); // 输出浊度 printf("浊度:%f NTU\r\n", turbidity); } } ``` 需要注意的是,该程序需要使用 STM32F4 开发板和一个连接到 ADC1 通道 0 的浊度传感器。具体的连接方式可以参考传感器的说明书或者网上的教程。此外,在程序中需要使用 printf 函数输出浊度值,需要先配置 UART,以便连接到 PC 上。
阅读全文

相关推荐

最新推荐

recommend-type

基于STM32单片机流水灯仿真与程序设计

STM32单片机流水灯仿真与程序设计是嵌入式系统学习中常见的实践项目,它可以帮助初学者理解和掌握单片机控制硬件的基本方法。在这个项目中,我们使用了STM32F103系列单片机,这是一种广泛应用的32位微控制器,基于...
recommend-type

STM32编程的最新KEIL5安装包

完成这些步骤后,你就可以在KEIL5中编写、编译和调试STM32程序了。KEIL5提供了一个直观的界面,可以创建C/C++项目,编辑代码,设置中断服务函数,管理库文件,并通过内置的模拟器或连接的硬件进行调试。 总的来说,...
recommend-type

STM32 SRAM启动的 KeiL 配置

STM32系列微控制器是基于ARM Cortex-M内核的单片机,广泛应用于嵌入式系统设计。在某些情况下,我们需要让STM32从SRAM而不是默认的Flash启动,这通常是为了快速响应、调试或者在Flash编程过程中保持系统运行。在本篇...
recommend-type

stm32开发 - 远离 Keil uVision, 回到 Visual Studio

例如,我们可以使用Visual Studio来编写stm32的代码,然后使用Keil uVision来编译和烧写程序。这样可以大大提高我们的开发效率和代码质量。 此外,我们也可以使用IAR Embedded Workbench来开发stm32,但是IAR也存在...
recommend-type

嵌入式实验报告 stm32f103 跑马灯实验 GPIO口操作

1. **STM32F103**:STM32F103是STMicroelectronics生产的一款基于ARM Cortex-M3内核的微控制器。它具有高性能、低功耗的特点,广泛应用于各种嵌入式系统设计中。在本实验中,它被用来控制LED的亮灭。 2. **GPIO ...
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"