package JavaPlane; class Line { private Point p1; private Point p2; public Line(Point p1,Point p2) { this.p1 = p1; this.p2 = p2; } public double getLength() { return Math.sqrt(Math.pow(p1.x-p2.x, 2)+Math.pow(p1.y-p2.y, 2)); } Point getStartPoint() { return p1; } Point getEndPoint() { return p2; } public static boolean point_on_line(Point point, Line line) { Point p1 = Point.sub(line.getStartPoint(), point); Point p2 = Point.sub(line.getEndPoint(), point); return Math.abs(Point.crossProduct(p1, p2)) < 1e-6; } /** * 求两条线的交点 * @return point */ //此处添加代码 /** * 求点到线的距离 * @return double */ //此处添加代码 }

时间: 2023-06-20 14:09:26 浏览: 96
以下是 Line 类的代码,包括添加的求两条线的交点和求点到线的距离的方法: ```java package JavaPlane; class Line { private Point p1; private Point p2; public Line(Point p1, Point p2) { this.p1 = p1; this.p2 = p2; } public double getLength() { return Math.sqrt(Math.pow(p1.x - p2.x, 2) + Math.pow(p1.y - p2.y, 2)); } Point getStartPoint() { return p1; } Point getEndPoint() { return p2; } public static boolean point_on_line(Point point, Line line) { Point p1 = Point.sub(line.getStartPoint(), point); Point p2 = Point.sub(line.getEndPoint(), point); return Math.abs(Point.crossProduct(p1, p2)) < 1e-6; } /** * 求两条线的交点 * * @param other 另一条线 * @return 交点,若不存在则返回 null */ public Point getIntersection(Line other) { double x1 = p1.x, y1 = p1.y, x2 = p2.x, y2 = p2.y; double x3 = other.p1.x, y3 = other.p1.y, x4 = other.p2.x, y4 = other.p2.y; double d = (y2 - y1) * (x4 - x3) - (x2 - x1) * (y4 - y3); if (Math.abs(d) < 1e-6) { // 平行或重合 return null; } double ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)) / d; double ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) / d; if (ua < 0 || ua > 1 || ub < 0 || ub > 1) { // 不相交 return null; } double x = x1 + ua * (x2 - x1); double y = y1 + ua * (y2 - y1); return new Point(x, y); } /** * 求点到线的距离 * * @param point 点 * @return 点到线的距离 */ public double distanceToPoint(Point point) { double x1 = p1.x, y1 = p1.y, x2 = p2.x, y2 = p2.y; double x0 = point.x, y0 = point.y; double numerator = Math.abs((y2 - y1) * x0 - (x2 - x1) * y0 + x2 * y1 - y2 * x1); double denominator = Math.sqrt(Math.pow(y2 - y1, 2) + Math.pow(x2 - x1, 2)); return numerator / denominator; } } ``` 其中,求两条线的交点的方法使用了向量叉积的知识进行计算。如果两条直线平行或者共线,那么它们没有交点,此时返回 null。否则,计算出交点的坐标并返回。 求点到线的距离的方法使用了点到直线距离公式进行计算。公式中的分子表示点到直线的距离的绝对值,分母表示直线的长度,两者相除即可得到点到直线的距离。
阅读全文

相关推荐

package work; import java.applet.Applet; import java.awt.Color; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.geom.Line2D; import java.awt.geom.Point2D; public class CyrusBeckAlgorithmApplet extends Applet { private static final long serialVersionUID = 1L; private Point2D.Double[] clipWindow; private Point2D.Double[][] lines; private double[][] vectors; private double[] p1, p2, D; @Override public void init() { clipWindow = new Point2D.Double[3]; clipWindow[0] = new Point2D.Double(200, 275); clipWindow[1] = new Point2D.Double(250.0 / 3, 100); clipWindow[2] = new Point2D.Double(950.0 / 3, 100); lines = new Point2D.Double[2][2]; lines[0][0] = new Point2D.Double(0, 120); lines[0][1] = new Point2D.Double(400, 120); lines[1][0] = new Point2D.Double(0, 180); lines[1][1] = new Point2D.Double(400, 180); vectors = new double[2][2]; D = new double[2]; } @Override public void paint(Graphics g) { super.paint(g); Graphics2D g2d = (Graphics2D) g; // draw clip window g2d.setColor(Color.BLACK); g2d.draw(new Line2D.Double(clipWindow[0], clipWindow[1])); g2d.draw(new Line2D.Double(clipWindow[1], clipWindow[2])); g2d.draw(new Line2D.Double(clipWindow[2], clipWindow[0])); // draw lines for (int i = 0; i < lines.length; i++) { Point2D.Double p1 = lines[i][0]; Point2D.Double p2 = lines[i][1]; cyrusBeckClip(g2d, p1, p2); } } private void cyrusBeckClip(Graphics2D g2d, Point2D.Double p1, Point2D.Double p2) { double tE = 0, tL = 1; double dx = p2.x - p1.x; double dy = p2.y - p1.y; for (int i = 0; i < clipWindow.length; i++) { Point2D.Double P1 = clipWindow[i]; Point2D.Double P2 = clipWindow[(i + 1) % clipWindow.length]; double nx = -(P2.y - P1.y); double ny = P2.x - P1.x; double D = -nx * P1.x - ny * P1.y; double numerator = nx * p1.x + ny * p1.y + D; double denominator = -(nx * dx + ny * dy); if (denominator == 0) { if (numerator < 0) { return; } } else { double t = numerator / denominator; if (denominator < 0) { tE = Math.max(tE, t); } else { tL = Math.min(tL, t); } } } if (tE <= tL) { double x1 = p1.x + tE * dx; double y1 = p1.y + tE * dy; double x2 = p1.x + tL * dx; double y2 = p1.y + tL * dy; g2d.setColor(Color.BLUE); g2d.draw(new Line2D.Double(p1, new Point2D.Double(x1, y1))); g2d.setColor(Color.RED); g2d.draw(new Line2D.Double(new Point2D.Double(x1, y1), new Point2D.Double(x2, y2))); g2d.setColor(Color.BLUE); g2d.draw(new Line2D.Double(new Point2D.Double(x2, y2), p2)); } } } 将此代码改为 Java 应用程序运行

最新推荐

recommend-type

ug1157-petalinux-tools-command-line-guide.pdf

petalinux-package命令用于打包PetaLinux项目生成的文件。该命令可以生成可执行文件、库文件和其他依赖项。例如,使用以下命令可以打包名为“myproject”的项目: `petalinux-package -c myproject` petalinux-...
recommend-type

关于eclipse安装spring插件报错An error occurred while collecting items to be installed...解决方案

主要介绍了关于eclipse安装spring插件报错An error occurred while collecting items to be installed...解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001