写一段python代码,读取一个csv文件,该文件没有表头,第一列为时间编号,编号以1,2,3……这样自然数的形式出现,第二列为充电量数值,将该数据集的前90%划分为训练集,其余部分设置为测试集,采用简单的遗传算法对lstm模型进行优化,遗传算法的形式力求简单,并基于优化后的模型对时间序列进行预测,必须可以得到预测结果,并打印rmse作为评价指标,将训练集和测试集分别绘制在两张图上,两张图片的横坐标单位为time/h,纵坐标单位为kwh
时间: 2024-03-01 22:55:14 浏览: 69
好的,这是一道非常具体的编程问题,需要结合实际情况进行编写。以下是我的代码实现,供你参考:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropout
from sklearn.metrics import mean_squared_error
import random
# 读取csv文件
data = pd.read_csv('data.csv', header=None)
# 获取数据行数
n = data.shape[0]
# 90%数据作为训练集
train_size = int(n * 0.9)
# 分割数据集
train_data = data.iloc[:train_size, :]
test_data = data.iloc[train_size:, :]
# 将数据转换成LSTM可以处理的格式
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back):
a = dataset[i:(i+look_back), 1]
dataX.append(a)
dataY.append(dataset[i + look_back, 1])
return np.array(dataX), np.array(dataY)
# LSTM模型
def create_model(units):
model = Sequential()
model.add(LSTM(units=units, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
return model
# 遗传算法
def genetic_algorithm(model, train_X, train_Y):
# 遗传算法参数
population_size = 10
elite_size = 2
mutation_rate = 0.01
generations = 10
# 初始化种群
population = []
for i in range(population_size):
units = random.randint(4, 32)
model = create_model(units)
population.append(model)
# 逐代进化
for generation in range(generations):
# 计算每个个体的适应度
fitness = []
for individual in population:
individual.fit(train_X, train_Y, epochs=1, batch_size=1, verbose=0)
y_pred = individual.predict(train_X)
fitness.append(1 / mean_squared_error(train_Y, y_pred))
# 选择精英个体
elite_indexes = sorted(range(len(fitness)), key=lambda x: fitness[x], reverse=True)[:elite_size]
elite_population = [population[i] for i in elite_indexes]
# 生成下一代个体
new_population = elite_population
while len(new_population) < population_size:
parent1 = random.choice(elite_population)
parent2 = random.choice(elite_population)
child = Sequential()
for layer in parent1.layers:
child.add(layer)
for layer in parent2.layers:
child.add(layer)
# 突变
if random.random() < mutation_rate:
child.layers[random.randint(0, len(child.layers)-1)].set_weights(
[weight * (random.random() * 2 - 1) for weight in child.layers[random.randint(0, len(child.layers)-1)].get_weights()])
new_population.append(child)
population = new_population
# 返回最优个体
fitness = []
for individual in population:
individual.fit(train_X, train_Y, epochs=10, batch_size=1, verbose=0)
y_pred = individual.predict(train_X)
fitness.append(mean_squared_error(train_Y, y_pred))
best_index = np.argmin(fitness)
best_model = population[best_index]
return best_model
# 数据预处理
look_back = 1
train_X, train_Y = create_dataset(train_data.values, look_back)
test_X, test_Y = create_dataset(test_data.values, look_back)
# 转换为3D格式
train_X = np.reshape(train_X, (train_X.shape[0], 1, train_X.shape[1]))
test_X = np.reshape(test_X, (test_X.shape[0], 1, test_X.shape[1]))
# 遗传算法优化LSTM模型
best_model = genetic_algorithm(create_model(4), train_X, train_Y)
# 预测并计算RMSE
train_predict = best_model.predict(train_X)
test_predict = best_model.predict(test_X)
train_rmse = np.sqrt(mean_squared_error(train_Y, train_predict))
test_rmse = np.sqrt(mean_squared_error(test_Y, test_predict))
print('Train RMSE:', train_rmse)
print('Test RMSE:', test_rmse)
# 绘制训练集和测试集的真实值和预测值
train_plot = np.empty_like(data.values)
train_plot[:, :] = np.nan
train_plot[look_back:len(train_predict)+look_back, :] = train_predict
test_plot = np.empty_like(data.values)
test_plot[:, :] = np.nan
test_plot[len(train_predict)+(look_back*2)+1:len(data.values)-1, :] = test_predict
plt.figure(figsize=(10, 6))
plt.plot(data.values[:, 1], label='True')
plt.plot(train_plot[:, 1], label='Train')
plt.plot(test_plot[:, 1], label='Test')
plt.xlabel('Time/h')
plt.ylabel('kwh')
plt.legend()
plt.show()
# 绘制训练集和测试集的真实值
plt.figure(figsize=(10, 6))
plt.plot(train_data.values[:, 1], label='Train')
plt.plot(test_data.values[:, 1], label='Test')
plt.xlabel('Time/h')
plt.ylabel('kwh')
plt.legend()
plt.show()
```
需要注意的是,这段代码中的遗传算法并不是最优的实现方式,只是为了简单实现而采用的一种方式。如果想要更加高效的遗传算法实现,可以参考遗传算法的相关论文并进行更深入的研究。
阅读全文