中文本文实现文本相似度计算的代码
时间: 2024-02-06 07:10:38 浏览: 131
以下是Python代码实现,需要使用jieba、sklearn等库:
```python
import jieba
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# 分词
def cut_words(text):
words = jieba.cut(text)
return ' '.join(words)
# 计算文本相似度
def get_similarity(text1, text2):
# 分词
words1 = cut_words(text1)
words2 = cut_words(text2)
# 向量化
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform([words1, words2])
# 计算余弦相似度
similarity = cosine_similarity(X[0], X[1])
return similarity[0][0]
```
以上代码中,我们使用了jieba对文本进行分词,并使用sklearn的TfidfVectorizer将文本向量化,最后使用余弦相似度计算文本相似度。请注意,如果需要比较多篇文本的相似度,可以将分词和向量化过程单独处理,避免重复计算。
相关问题
中文本文实现多文本相似度计算的代码
以下是一个简单的中文文本相似度计算的代码实现,使用了jieba分词和余弦相似度计算方法:
```python
import jieba
import numpy as np
def cosine_similarity(vector1, vector2):
dot_product = np.dot(vector1, vector2)
norm1 = np.linalg.norm(vector1)
norm2 = np.linalg.norm(vector2)
return dot_product / (norm1 * norm2)
def get_word_vector(text):
words = jieba.lcut(text)
word_vector = {}
for word in words:
if word not in word_vector:
word_vector[word] = 1
else:
word_vector[word] += 1
return word_vector
def get_text_vector(text, word_vector):
words = jieba.lcut(text)
text_vector = []
for word in word_vector:
if word in words:
text_vector.append(words.count(word))
else:
text_vector.append(0)
return np.array(text_vector)
def text_similarity(text1, text2):
word_vector1 = get_word_vector(text1)
word_vector2 = get_word_vector(text2)
word_set = set(word_vector1.keys()) | set(word_vector2.keys())
text_vector1 = get_text_vector(text1, word_set)
text_vector2 = get_text_vector(text2, word_set)
return cosine_similarity(text_vector1, text_vector2)
```
使用方法:
```python
text1 = "这是一段测试文本1"
text2 = "这是一段测试文本2"
similarity = text_similarity(text1, text2)
print(similarity)
```
输出结果为两个文本的相似度。
中文本文分词、去停用词、关键词提取、向量化、文本相似度计算代码
以下是Python代码实现,需要使用jieba、pandas、sklearn等库:
1. 分词
```python
import jieba
def cut_words(text):
words = jieba.cut(text)
return ' '.join(words)
```
2. 去停用词
```python
import pandas as pd
def remove_stopwords(words):
stopwords = pd.read_csv('stopwords.txt', index_col=False, quoting=3, sep='\t', names=['stopword'], encoding='utf-8')
words = words.split(' ')
words = [word for word in words if word not in stopwords]
return ' '.join(words)
```
3. 关键词提取
```python
from sklearn.feature_extraction.text import TfidfVectorizer
def get_keywords(text):
vectorizer = TfidfVectorizer(max_features=200)
X = vectorizer.fit_transform([text])
feature_names = vectorizer.get_feature_names()
keywords = [feature_names[index] for index in X.toarray()[0].argsort()[::-1][:10]]
return keywords
```
4. 向量化
```python
def get_vectors(text1, text2):
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform([text1, text2])
return X.toarray()
```
5. 文本相似度计算
```python
from sklearn.metrics.pairwise import cosine_similarity
def get_similarity(text1, text2):
vectors = get_vectors(text1, text2)
similarity = cosine_similarity(vectors[0].reshape(1, -1), vectors[1].reshape(1, -1))[0][0]
return similarity
```
以上代码仅供参考,实际应用时需要根据具体需求进行修改。
阅读全文