glLineWidth(2.0f); glColor3f(1.0f, 0.0f, 0.0f); glBegin(GL_LINE_STRIP); float r = 1.0f; for (float theta = 0.0f; theta <= 2 * PI; theta += PI / 180.0f) { float value = std::cos(2 * PI * spacing * std::cos(theta) / wavelength); value *= std::cos(beamwidth * std::sin(theta)); drawPolarLine(r * value, theta); } glEnd();代码解析,并可修改极点位置如何修改

时间: 2024-03-04 17:52:17 浏览: 19
这段代码使用OpenGL库绘制了一个极坐标图形。先通过glLineWidth函数设置线宽为2个像素,再通过glColor3f函数设置绘制颜色为红色。 接着使用glBegin(GL_LINE_STRIP)函数开始绘制线条,GL_LINE_STRIP表示绘制连接线条,不会出现孤立的线段。然后通过for循环计算每个点的极坐标,并调用drawPolarLine函数绘制点。 drawPolarLine函数根据输入的极坐标参数,通过glVertex2f函数绘制点的坐标。最后通过glEnd函数结束绘制。 如果要修改极点位置,可以在计算每个点的极坐标时,将极点的半径和角度作为变量,进行修改即可。比如将极点半径r改为2.0f,则修改代码为: ``` float r = 2.0f; for (float theta = 0.0f; theta <= 2 * PI; theta += PI / 180.0f) { float value = std::cos(2 * PI * spacing * std::cos(theta) / wavelength); value *= std::cos(beamwidth * std::sin(theta)); drawPolarLine(r * value, theta); } ``` 这样就将极点位置从原点移动到了半径为2的位置。
相关问题

glLineWidth(2.0f); glColor3f(1.0f, 0.0f, 0.0f); glBegin(GL_LINE_STRIP); float r = 1.0f; for (float theta = 0.0f; theta <= 2 * PI; theta += PI / 180.0f) { float value = std::cos(2 * PI * spacing * std::cos(theta) / wavelength); value *= std::cos(beamwidth * std::sin(theta)); drawPolarLine(r * value, theta); } glEnd();修该为根据世界坐标绘制而不是屏幕坐标

这段代码使用OpenGL库绘制了一个极坐标图形,但是绘制的是屏幕坐标。如果要根据世界坐标绘制,可以通过以下步骤进行修改: 1. 设置投影矩阵,将屏幕坐标转换为世界坐标。可以使用gluOrtho2D函数设置正交投影矩阵,将屏幕的左下角坐标映射为世界坐标系的左下角,右上角坐标映射为世界坐标系的右上角。例如: ``` glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0, screenWidth, 0, screenHeight); glMatrixMode(GL_MODELVIEW); ``` 2. 修改drawPolarLine函数,将屏幕坐标转换为世界坐标。可以通过gluUnProject函数将屏幕坐标转换为世界坐标。例如: ``` void drawPolarLine(float r, float theta) { float x = r * std::cos(theta); float y = r * std::sin(theta); GLdouble worldX, worldY, worldZ; GLint viewport[4]; GLdouble modelview[16]; GLdouble projection[16]; glGetDoublev(GL_MODELVIEW_MATRIX, modelview); glGetDoublev(GL_PROJECTION_MATRIX, projection); glGetIntegerv(GL_VIEWPORT, viewport); gluUnProject(screenWidth / 2 + x, screenHeight / 2 + y, 0.0, modelview, projection, viewport, &worldX, &worldY, &worldZ); glVertex2d(worldX, worldY); } ``` 这样就可以将屏幕坐标转换为世界坐标,并通过glVertex2d函数绘制世界坐标系中的点。 修改后的代码: ``` glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0, screenWidth, 0, screenHeight); glMatrixMode(GL_MODELVIEW); glLineWidth(2.0f); glColor3f(1.0f, 0.0f, 0.0f); glBegin(GL_LINE_STRIP); float r = 1.0f; for (float theta = 0.0f; theta <= 2 * PI; theta += PI / 180.0f) { float value = std::cos(2 * PI * spacing * std::cos(theta) / wavelength); value *= std::cos(beamwidth * std::sin(theta)); drawPolarLine(r * value, theta); } glEnd(); void drawPolarLine(float r, float theta) { float x = r * std::cos(theta); float y = r * std::sin(theta); GLdouble worldX, worldY, worldZ; GLint viewport[4]; GLdouble modelview[16]; GLdouble projection[16]; glGetDoublev(GL_MODELVIEW_MATRIX, modelview); glGetDoublev(GL_PROJECTION_MATRIX, projection); glGetIntegerv(GL_VIEWPORT, viewport); gluUnProject(screenWidth / 2 + x, screenHeight / 2 + y, 0.0, modelview, projection, viewport, &worldX, &worldY, &worldZ); glVertex2d(worldX, worldY); } ```

void ViewerAR::DrawPlane(int ndivs, float ndivsize) { // Plane parallel to x-z at origin with normal -y const float minx = -ndivs * ndivsize; const float minz = -ndivs * ndivsize; const float maxx = ndivs * ndivsize; const float maxz = ndivs * ndivsize; glLineWidth(2); glColor3f(0.7f, 0.7f, 1.0f); glBegin(GL_LINES); for (int n = 0; n <= 2 * ndivs; n++) { glVertex3f(minx + ndivsize * n, 0, minz); glVertex3f(minx + ndivsize * n, 0, maxz); glVertex3f(minx, 0, minz + ndivsize * n); glVertex3f(maxx, 0, minz + ndivsize * n); } glEnd(); }

这段代码是一个函数 `DrawPlane`,用于绘制一个平面。该平面是平行于 x-z 平面的,位于原点,法线方向为 -y。 函数的参数是 `ndivs` 和 `ndivsize`,分别表示平面的划分数和每个小划分的大小。 代码首先计算了平面的四个顶点的坐标,分别是 (`minx`, 0, `minz`)、(`minx`, 0, `maxz`)、(`maxx`, 0, `minz`)、(`maxx`, 0, `maxz`)。 接下来使用 OpenGL 的函数设置了线条的宽度和颜色。 然后通过使用 `glBegin(GL_LINES)` 和 `glEnd()` 函数来开始和结束绘制线段的过程。 在循环中,通过使用 `glVertex3f` 函数来定义每个线段的两个端点的坐标。循环中会绘制平行于 x 轴和 z 轴的线段,使得整个平面被划分为多个小的正方形。 最后,绘制完成后,函数执行结束。

相关推荐

#define _USE_MATH_DEFINES #include <cstdlib> #include <cmath> #include <iostream> #include <GL/glew.h> #include <GL/freeglut.h> // Globals. static float R = 40.0; // Radius of circle. static float X = 50.0; // X-coordinate of center of circle. static float Y = 50.0; // Y-coordinate of center of circle. static const int numVertices = 50; // Number of vertices on circle. static int verticesColors[6 * numVertices]; void generateVertices() { float t = 0; // Angle parameter. for (int i = 0; i < 6*numVertices; i+=6) { verticesColors[] = X + R * cos(t); //x verticesColors[] = Y + R * sin(t); //y verticesColors[] = 0.0; //z verticesColors[] = 1.0; //r verticesColors[] = 0.0; //g verticesColors[] = 0.0; //b t += 2 * M_PI / numVertices; //angle } } // Drawing routine. void drawScene(void) { glClear(GL_COLOR_BUFFER_BIT); glColor3f(1, 0, 0); glLineWidth(5); glDrawArrays(GL_LINE_LOOP, 0, 50); glFlush(); } // Initialization routine. void setup(void) { glClearColor(1.0, 1.0, 1.0, 0.0); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_COLOR_ARRAY); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), &verticesColors[0]); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), &verticesColors[3]) } // OpenGL window reshape routine. void resize(int w, int h) { glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } // Keyboard input processing routine. void keyInput(unsigned char key, int x, int y) { switch (key) { case 27: exit(0); break; default: break; } } // Main routine. int main(int argc, char** argv) { generateVertices(); glutInit(&argc, argv); glutInitContextVersion(4, 3); glutInitContextProfile(GLUT_COMPATIBILITY_PROFILE); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA); glutInitWindowSize(500, 500); glutInitWindowPosition(100, 100); glutCreateWindow("circle.cpp"); glutDisplayFunc(drawScene); glutReshapeFunc(resize); glutKeyboardFunc(keyInput); glewExperimental = GL_TRUE; glewInit(); setup(); glutMainLoop(); }怎么修改

#define _USE_MATH_DEFINES #include <cstdlib> #include <cmath> #include <iostream> #include <GL/glew.h> #include <GL/freeglut.h> // Globals. static float R = 40.0; // Radius of circle. static float X = 50.0; // X-coordinate of center of circle. static float Y = 50.0; // Y-coordinate of center of circle. static const int numVertices = 50; // Number of vertices on circle. static int verticesColors[6 * numVertices]; void generateVertices() { float t = 0; // Angle parameter. for (int i = 0; i < 6 * numVertices; i += 6) { verticesColors[i] = X + R * cos(t); //x verticesColors[i] = Y + R * sin(t); //y verticesColors[i] = 0.0; //z verticesColors[i] = 1.0; //r verticesColors[i] = 0.0; //g verticesColors[i] = 0.0; //b t += 2 * M_PI / numVertices; //angle } } // Drawing routine. void drawScene(void) { glClear(GL_COLOR_BUFFER_BIT); glColor3f(1, 0, 0); glLineWidth(5); glDrawArrays(GL_POLYGON, 0, numVertices); glFlush(); } // Initialization routine. void setup(void) { glClearColor(1.0, 1.0, 1.0, 0.0); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_COLOR_ARRAY); glColorPointer(3, GL_FLOAT, 6 * sizeof(float), &verticesColors[0]); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), &verticesColors[3]); } // OpenGL window reshape routine. void resize(int w, int h) { glViewport(0, 0, w, h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } // Keyboard input processing routine. void keyInput(unsigned char key, int x, int y) { switch (key) { case 27: exit(0); break; default: break; } } // Main routine. int main(int argc, char** argv) { generateVertices(); glutInit(&argc, argv); glutInitContextVersion(4, 3); glutInitContextProfile(GLUT_COMPATIBILITY_PROFILE); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA); glutInitWindowSize(500, 500); glutInitWindowPosition(100, 100); glutCreateWindow("circle.cpp"); glutDisplayFunc(drawScene); glutReshapeFunc(resize); glutKeyboardFunc(keyInput); glewExperimental = GL_TRUE; glewInit(); setup(); glutMainLoop(); }为什么输出什么也看不到

最新推荐

recommend-type

微信小程序-番茄时钟源码

微信小程序番茄时钟的源码,支持进一步的修改。番茄钟,指的是把工作任务分解成半小时左右,集中精力工作25分钟后休息5分钟,如此视作种一个“番茄”,而“番茄工作法”的流程能使下一个30分钟更有动力。
recommend-type

激光雷达专题研究:迈向高阶智能化关键,前瞻布局把握行业脉搏.pdf

电子元件 电子行业 行业分析 数据分析 数据报告 行业报告
recommend-type

安享智慧理财测试项目Mock服务代码

安享智慧理财测试项目Mock服务代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这