使用sigmoid函数完成学生成绩预测模型_逻辑回归实战练习——根据学生成绩预测是否被录取

时间: 2023-05-26 21:07:12 浏览: 250
ZIP

用机器学习的方法对学生成绩进行统计分析和预测。包括决策树算法、逻辑回归算法、随机森林算法等,用python.zip

star5星 · 资源好评率100%
本文将演示如何使用sigmoid函数完成一个简单的学生成绩预测模型,模型的目标是根据学生的两门成绩预测该学生是否被录取。我们将使用逻辑回归算法来训练模型,并使用Python的NumPy库和matplotlib库进行数据处理和可视化。 首先,我们需要导入相应的库和数据集。数据集包含了两门考试的成绩和每个学生是否被录取的信息。 ```python import numpy as np import matplotlib.pyplot as plt # 导入数据集 data = np.loadtxt('ex2data1.txt', delimiter=',') X = data[:, :-1] # 特征矩阵 y = data[:, -1] # 目标矩阵 # 将y转换为行向量 y = y.reshape((len(y), 1)) ``` 接下来,我们需要对数据进行可视化,看看这些数据的分布情况。我们将根据目标矩阵y的值,将数据点的颜色区分为蓝色和红色,其中蓝色表示未被录取,红色表示已被录取。 ```python # 数据可视化 def plot_data(X, y): # 将数据按照分类分别画出 pos = (y == 1).reshape(len(y)) neg = (y == 0).reshape(len(y)) plt.scatter(X[pos, 0], X[pos, 1], marker='+', c='r') plt.scatter(X[neg, 0], X[neg, 1], marker='o', c='b') plt.xlabel('Exam 1 score') plt.ylabel('Exam 2 score') plt.legend(['Admitted', 'Not admitted']) plt.show() plot_data(X, y) ``` 在数据可视化完成后,我们可以看到两门成绩的分布情况,以及哪些学生被录取,哪些学生没有被录取。 ![image-20211019152047226](https://i.loli.net/2021/10/19/8WAguvIrtwMfJbY.png) 可以看到,这些数据是线性可分的,我们可以使用逻辑回归算法来训练模型。 逻辑回归算法的核心在于使用sigmoid函数作为模型的预测函数。sigmoid函数可以将任意实数映射到0到1之间的一个值,因此它非常适合用于二分类问题。sigmoid函数的公式为: $$ g(z) = \frac{1}{1+e^{-z}} $$ 其中$z=w^Tx$,$w$表示权重向量,$x$表示特征向量。 我们可以将逻辑回归算法表示为: $$ h_\theta (x) = g(\theta^Tx) = \frac{1}{1+e^{-\theta^Tx}} $$ 其中$h_\theta (x)$表示模型的预测值,$\theta$表示模型的参数,具体地,$\theta$是一个列向量,其长度等于特征向量$x$的长度加1,因为我们要让模型可以学习到一个截距参数。 接下来,我们需要定义sigmoid函数和代价函数。代价函数的公式为: $$ J(\theta) = -\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}log(h_{\theta} (x^{(i)})) + (1-y^{(i)})log(1-h_{\theta} (x^{(i)}))] $$ 其中$m$表示样本数。 ```python # 定义sigmoid函数 def sigmoid(z): return 1 / (1 + np.exp(-z)) # 定义代价函数 def cost_function(theta, X, y): m = len(y) h = sigmoid(X @ theta) J = 1 / m * np.sum(-y * np.log(h) - (1 - y) * np.log(1 - h)) return J ``` 接下来,我们需要初始化模型的参数,然后使用梯度下降算法来最小化代价函数。梯度下降算法的公式为: $$ \theta_j = \theta_j - \alpha\frac{\partial}{\partial\theta_j}J(\theta) $$ 其中$\alpha$表示学习率,$\frac{\partial}{\partial\theta_j}J(\theta)$表示代价函数对于$\theta_j$的偏导数。 ```python # 初始化参数 m, n = X.shape X = np.hstack((np.ones((m, 1)), X)) # 增加一列新特征x0,其值恒为1 initial_theta = np.zeros((n + 1, 1)) # 定义梯度下降函数 def gradient_descent(theta, X, y, alpha, num_iters): m = len(y) J_history = np.zeros((num_iters, 1)) for i in range(num_iters): h = sigmoid(X @ theta) theta -= alpha / m * X.T @ (h - y) J_history[i] = cost_function(theta, X, y) if i % 100 == 0: print('Iteration %d | Cost: %f' % (i, J_history[i])) return theta, J_history # 运行梯度下降算法 alpha = 0.01 num_iters = 5000 theta, J_history = gradient_descent(initial_theta, X, y, alpha, num_iters) print('Theta:', theta) print('Cost:', J_history[-1]) ``` 梯度下降算法执行完毕后,我们可以看到模型的参数$\theta$和代价函数的最终值。 接下来,我们需要绘制代价函数的变化图表,以便我们观察模型的训练过程。 ```python # 绘制代价函数图表 def plot_cost_function(J_history): plt.plot(J_history) plt.xlabel('Iterations') plt.ylabel('Cost') plt.title('Cost Function') plt.show() plot_cost_function(J_history) ``` 代价函数随着训练迭代次数的增加而降低,说明模型的训练效果不错。 ![image-20211019153020888](https://i.loli.net/2021/10/19/wfyrjJV7e92P6xG.png) 最后,我们需要绘制决策边界,即将模型的预测结果可视化展示。由于我们训练的模型是一个二分类模型,因此决策边界是一个直线。我们可以通过找到sigmoid函数原点的位置来计算决策边界的斜率和截距。 ```python # 绘制决策边界 def plot_decision_boundary(theta, X, y): plot_data(X[:, 1:], y) # 计算决策边界 x_boundary = np.array([np.min(X[:, 1]), np.max(X[:, 1])]) y_boundary = -(theta[0] + theta[1] * x_boundary) / theta[2] plt.plot(x_boundary, y_boundary) plt.show() plot_decision_boundary(theta, X, y) ``` 将决策边界和数据点绘制在同一张图表上,可以清晰地看到哪些学生被录取了,哪些学生没有被录取。 ![image-20211019153703768](https://i.loli.net/2021/10/19/2zokxISnN7QYdHu.png) 从以上结果可以看出,我们通过sigmoid函数和逻辑回归算法成功地训练了一个学生成绩预测模型,并使用该模型成功地预测了哪些学生会被录取。
阅读全文

相关推荐

最新推荐

recommend-type

PyTorch线性回归和逻辑回归实战示例

逻辑回归通常使用交叉熵损失(Cross Entropy Loss),激活函数是sigmoid。这里不再展示具体代码,但可以按照线性回归的框架进行修改。 **总结** PyTorch提供了灵活且易于使用的API,使得实现线性回归和逻辑回归变...
recommend-type

Python利用逻辑回归模型解决MNIST手写数字识别问题详解

在训练逻辑回归模型时,我们使用梯度下降法或优化器如Adam来最小化损失函数,调整模型的权重和偏置。 训练过程中,为了避免过拟合,我们通常会用一部分训练数据作为验证集,监测模型在未见过的数据上的性能。MNIST...
recommend-type

[小白系列]sigmoid和tanh激活函数的绘制(分开画,合起来画,总有一款适合你),逐行代码详解

在神经网络中,激活函数是不可或缺的组成部分,它们赋予了网络模型非线性特性,使得模型能够处理更复杂的任务。本篇文章将详细讲解两种常见的激活函数——Sigmoid和Tanh,并通过Python代码演示如何分别绘制它们的...
recommend-type

Sigmoid函数的分段非线性拟合法及其FPGA实现

Sigmoid函数在神经网络中被广泛应用,因为它提供了一种平滑的、连续的、具有饱和特性的非线性转换方式,使得神经元的输出能够更好地模拟生物神经元的行为。分段非线性逼近法是一种有效的处理Sigmoid函数的方法,尤其...
recommend-type

Python实现的逻辑回归算法示例【附测试csv文件下载】

逻辑回归是一种广泛应用的分类算法,它通过拟合一个Sigmoid函数(也称为逻辑函数)来预测离散的输出结果,例如二元分类问题。这里,我们用了一个鸢尾花数据集(Iris dataset)作为示例。 首先,我们需要导入必要的...
recommend-type

SSM Java项目:StudentInfo 数据管理与可视化分析

资源摘要信息:"StudentInfo 2.zip文件是一个压缩包,包含了多种数据可视化和数据分析相关的文件和代码。根据描述,此压缩包中包含了实现人员信息管理系统的增删改查功能,以及生成饼图、柱状图、热词云图和进行Python情感分析的代码或脚本。项目使用了SSM框架,SSM是Spring、SpringMVC和MyBatis三个框架整合的简称,主要应用于Java语言开发的Web应用程序中。 ### 人员增删改查 人员增删改查是数据库操作中的基本功能,通常对应于CRUD(Create, Retrieve, Update, Delete)操作。具体到本项目中,这意味着实现了以下功能: - 增加(Create):可以向数据库中添加新的人员信息记录。 - 查询(Retrieve):可以检索数据库中的人员信息,可能包括基本的查找和复杂的条件搜索。 - 更新(Update):可以修改已存在的人员信息。 - 删除(Delete):可以从数据库中移除特定的人员信息。 实现这些功能通常需要编写相应的后端代码,比如使用Java语言编写服务接口,然后通过SSM框架与数据库进行交互。 ### 数据可视化 数据可视化部分包括了生成饼图、柱状图和热词云图的功能。这些图形工具可以直观地展示数据信息,帮助用户更好地理解和分析数据。具体来说: - 饼图:用于展示分类数据的比例关系,可以清晰地显示每类数据占总体数据的比例大小。 - 柱状图:用于比较不同类别的数值大小,适合用来展示时间序列数据或者不同组别之间的对比。 - 热词云图:通常用于文本数据中,通过字体大小表示关键词出现的频率,用以直观地展示文本中频繁出现的词汇。 这些图表的生成可能涉及到前端技术,如JavaScript图表库(例如ECharts、Highcharts等)配合后端数据处理实现。 ### Python情感分析 情感分析是自然语言处理(NLP)的一个重要应用,主要目的是判断文本的情感倾向,如正面、负面或中立。在这个项目中,Python情感分析可能涉及到以下几个步骤: - 文本数据的获取和预处理。 - 应用机器学习模型或深度学习模型对预处理后的文本进行分类。 - 输出情感分析的结果。 Python是实现情感分析的常用语言,因为有诸如NLTK、TextBlob、scikit-learn和TensorFlow等成熟的库和框架支持相关算法的实现。 ### IJ项目与readme文档 "IJ项目"可能是指IntelliJ IDEA项目,IntelliJ IDEA是Java开发者广泛使用的集成开发环境(IDE),支持SSM框架。readme文档通常包含项目的安装指南、运行步骤、功能描述、开发团队和联系方式等信息,是项目入门和理解项目结构的首要参考。 ### 总结 "StudentInfo 2.zip"是一个综合性的项目,涉及到后端开发、前端展示、数据分析及自然语言处理等多个技术领域。通过这个项目,可以学习到如何使用SSM框架进行Web应用开发、实现数据可视化和进行基于Python的情感分析。这对于想要掌握Java Web开发和数据处理能力的学习者来说是一个很好的实践机会。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

负载均衡技术深入解析:确保高可用性的网络服务策略

![负载均衡技术深入解析:确保高可用性的网络服务策略](https://media.geeksforgeeks.org/wp-content/uploads/20240130183502/Source-IP-hash--(1).webp) # 1. 负载均衡技术概述 ## 1.1 负载均衡技术的重要性 在现代信息技术不断发展的今天,互联网应用的规模和服务的复杂性日益增长。因此,为了确保高性能、高可用性和扩展性,负载均衡技术变得至关重要。它能够有效地分配和管理网络或应用程序的流量,使得服务器和网络资源得以最优利用。 ## 1.2 负载均衡技术的基本概念 负载均衡是一种网络流量管理技术,旨
recommend-type

怎么解决头文件重复包含

解决头文件重复包含的问题主要有以下几个策略: 1. **包含 guards**:在头文件开头添加一种特殊的标识符(通常是宏),如 `#ifndef` 和 `#define` 对组合,检查某个特定宏是否已经定义过。如果没有定义,则包含内容,然后设置该宏。如果在同一文件内再次包含,由于宏已经存在,就不会再执行包含的内容,从而避免重复。 ```cpp #ifndef HEADER_NAME_H_ #define HEADER_NAME_H_ // 内容... #endif // HEADER_NAME_H_ ``` 2. **使用 extern 关键字**:对于非静态变量和函数,可以将它们
recommend-type

pyedgar:Python库简化EDGAR数据交互与文档下载

资源摘要信息:"pyedgar:用于与EDGAR交互的Python库" 知识点说明: 1. pyedgar库概述: pyedgar是一个Python编程语言下的开源库,专门用于与美国证券交易委员会(SEC)的电子数据获取、访问和检索(EDGAR)系统进行交互。通过该库,用户可以方便地下载和处理EDGAR系统中公开提供的财务报告和公司文件。 2. EDGAR系统介绍: EDGAR系统是一个自动化系统,它收集、处理、验证和发布美国证券交易委员会(SEC)要求的公司和其他机构提交的各种文件。EDGAR数据库包含了美国上市公司的详细财务报告,包括季度和年度报告、委托声明和其他相关文件。 3. pyedgar库的主要功能: 该库通过提供两个主要接口:文件(.py)和索引,实现了对EDGAR数据的基本操作。文件接口允许用户通过特定的标识符来下载和交互EDGAR表单。索引接口可能提供了对EDGAR数据库索引的访问,以便快速定位和获取数据。 4. pyedgar库的使用示例: 在描述中给出了一个简单的使用pyedgar库的例子,展示了如何通过Filing类与EDGAR表单进行交互。首先需要从pyedgar模块中导入Filing类,然后创建一个Filing实例,其中第一个参数(20)可能代表了提交年份的最后两位,第二个参数是一个特定的提交号码。创建实例后,可以打印实例来查看EDGAR接口的返回对象,通过打印实例的属性如'type',可以获取文件的具体类型(例如10-K),这代表了公司提交的年度报告。 5. Python语言的应用: pyedgar库的开发和应用表明了Python语言在数据分析、数据获取和自动化处理方面的强大能力。Python的简洁语法和丰富的第三方库使得开发者能够快速构建工具以处理复杂的数据任务。 6. 压缩包子文件信息: 文件名称列表中的“pyedgar-master”表明该库可能以压缩包的形式提供源代码和相关文件。文件列表中的“master”通常指代主分支或主版本,在软件开发中,主分支通常包含了最新的代码和功能。 7. 编程实践建议: 在使用pyedgar库之前,建议先阅读官方文档,了解其详细的安装、配置和使用指南。此外,进行编程实践时,应当注意遵守SEC的使用条款,确保只下载和使用公开提供的数据。 8. EDGAR数据的应用场景: EDGAR数据广泛应用于金融分析、市场研究、合规性检查、学术研究等领域。通过编程访问EDGAR数据可以让用户快速获取到一手的财务和公司运营信息,从而做出更加明智的决策。 9. Python库的维护和更新: 随着EDGAR数据库内容的持续更新和变化,pyedgar库也应定期进行维护和更新,以保证与EDGAR系统的接口兼容性。开发者社区对于这类开源项目的支持和贡献也非常重要。 10. 注意事项: 在使用pyedgar库下载和处理数据时,用户应当确保遵守相应的法律法规,尤其是关于数据版权和隐私方面的规定。此外,用户在处理敏感数据时,还需要考虑数据安全和隐私保护的问题。