import numpy numpy.random.seed(10) # 2维随机游走(有限制) def random_walk2D_barrier(np, ns): #------------begin------------ … # 打印结果 print('粒子随机游走%d步后平均位置: (%.5f, %.5f)' %(ns, mx, my))

时间: 2023-08-15 09:16:44 浏览: 172
这段代码是用 Python 实现的一个 2 维随机游走模拟,其中包含了一个有限制的障碍物。函数名为 `random_walk2D_barrier`,接受两个参数 `np` 和 `ns`,分别表示粒子数和游走步数。在函数内部,通过使用 NumPy 库生成随机步长,模拟粒子的运动轨迹,并且在有限制的区域内进行随机游走。最后,输出游走结束后粒子的平均位置坐标。其中 `%d`、`%.5f` 等是 Python 的格式化输出语法,用于控制输出格式。
相关问题

根据提示,在右侧编辑器补充代码,完善有墙的二维随机游走,使得“游走者”不能走出矩形区域 A=[xL,xH][yL,yH]。设考虑 np 个粒子初始位置在原点,在有墙的二维随机游走 ns 步,我们设置 xL=yL=− ns ​ ,xH=yH= ns ​ (墙边界可以是浮点值)。 请你编写函数 random_walk2D_barrier(np, ns),返回 np 个粒子随机游走 ns 步后平均位置的估算值。 提示:首先执行一个方向上的移动。然后测试新位置是否在 A 外。如果在 A 外,则把其这个方向上的位置设置为矩形区域边界值。 要求:产生随机数时使用 numpy 中的函数 randint(1,5),且每次调用仅产生一个随机数,随机值与方向的对应关系如下:NORTH = 1; SOUTH = 2; WEST = 3; EAST = 4。from numpy import * random.seed(10) # 2维随机游走(有限制) def random_walk2D_barrier(np, ns): #------------begin------------ #------------end------------ np = 1000 # 粒子数量 for ns in [100, 200]: # 步数 mx, my = random_walk2D_barrier(np, ns) # 打印结果 print('粒子随机游走%d步后平均位置: (%.5f, %.5f)' %(ns, mx, my))

from numpy import * random.seed(10) def random_walk2D_barrier(np, ns): xL, xH, yL, yH = -ns, ns, -ns, ns # 设置矩形区域 mx, my = 0, 0 # 粒子平均位置的初始值 for i in range(np): # 对于每一个粒子 x, y = 0, 0 # 初始位置为原点 for j in range(ns): # 进行 ns 步的随机游走 direction = randint(1, 5) # 生成随机方向 if direction == 1: # 向北走 y += 1 elif direction == 2: # 向南走 y -= 1 elif direction == 3: # 向西走 x -= 1 else: # 向东走 x += 1 # 判断是否越界 if x < xL: x = xL elif x > xH: x = xH if y < yL: y = yL elif y > yH: y = yH # 累加粒子的位置 mx += x my += y # 计算粒子平均位置 mx /= np my /= np return mx, my np = 1000 for ns in [100, 200]: mx, my = random_walk2D_barrier(np, ns) print('粒子随机游走%d步后平均位置: (%.5f, %.5f)' %(ns, mx, my))

本关任务:编写一个程序,实现有墙的二维随机游走。 相关知识 为了完成本关任务,你需要掌握: 1.常见 Python 随机数函数; 2.随机游走(random walk)。 常见Python随机数函数 import numpy r = numpy.random.random(n) [0, 1) n个实数 r = numpy.random.uniform(a, b, n) [a, b) n个实数 i = numpy.random.randint(a, b+1, n) [a, b] 整数 i = numpy.random.random_integers(a, b, n) [a, b] 整数 随机游走(random walk) 也称随机漫步,是指基于过去的表现,无法预测将来的发展步骤和方向。其概念接近于布朗运动,是布朗运动的理想数学状态。醉汉行走的轨迹、布朗运动、股票的涨跌等行为都可用随机游走来模拟。 编程要求 根据提示,在右侧编辑器补充代码,完善有墙的二维随机游走,使得“游走者”不能走出矩形区域 A=[xL,xH][yL,yH]。设考虑 np 个粒子初始位置在原点,在有墙的二维随机游走 ns 步,我们设置 xL=yL=− ns ​ ,xH=yH= ns ​ (墙边界可以是浮点值)。 请你编写函数 random_walk2D_barrier(np, ns),返回 np 个粒子随机游走 ns 步后平均位置的估算值。 提示:首先执行一个方向上的移动。然后测试新位置是否在 A 外。如果在 A 外,则把其这个方向上的位置设置为矩形区域边界值。 要求:产生随机数时使用 numpy 中的函数 randint(1,5),且每次调用仅产生一个随机数,随机值与方向的对应关系如下:NORTH = 1; SOUTH = 2; WEST = 3; EAST = 4。

```python import numpy as np NORTH, SOUTH, WEST, EAST = 1, 2, 3, 4 def random_walk2D_barrier(np, ns): xL, xH, yL, yH = -ns, ns, -ns, ns x = np.zeros(np) y = np.zeros(np) for i in range(ns): direction = np.random.randint(1, 5, np) x += np.where(direction == EAST, 1, 0) x -= np.where(direction == WEST, 1, 0) y += np.where(direction == NORTH, 1, 0) y -= np.where(direction == SOUTH, 1, 0) x = np.where(x < xL, xL, x) x = np.where(x > xH, xH, x) y = np.where(y < yL, yL, y) y = np.where(y > yH, yH, y) return np.mean(x), np.mean(y) ``` 解释如下: - 首先定义了4个方向的常量。 - 然后定义函数 `random_walk2D_barrier(np, ns)`,其中 `np` 是粒子数,`ns` 是步数。 - 接下来定义矩形区域的边界,即 $xL=yL=-ns, xH=yH=ns$。 - 初始化所有粒子的位置为原点。 - 接下来开始进行 ns 步的随机游走,每步的方向使用 `numpy.random.randint(1, 5, np)` 产生。 - 对于每个粒子,根据其方向进行一步的移动,然后判断新位置是否在矩形区域 A 外,如果在则将其坐标调整至矩形区域 A 上。 - 最后返回所有粒子的平均位置坐标。
阅读全文

相关推荐

最新推荐

recommend-type

np.random.seed() 的使用详解

在Python的科学计算库NumPy中,`np.random.seed()`是一个非常重要的函数,它用于设置随机数生成器的状态,以便在不同的运行或多次执行时获得可重复的随机数序列。这篇详解将深入探讨`np.random.seed()`的使用及其...
recommend-type

基于numpy.random.randn()与rand()的区别详解

在Python的科学计算库NumPy中,`numpy.random.randn()`和`numpy.random.rand()`是两个常用的函数,用于生成随机数序列。它们虽然都是用来创建多维数组填充随机数,但生成的随机数类型和分布有所不同。 `numpy....
recommend-type

python numpy库np.percentile用法说明

`numpy.percentile` 是 Python 的科学计算库 numpy 中的一个功能强大的函数,用于计算数组数据的分位数。分位数是一种统计学上的概念,它将数据集分为相等的几部分,例如,第一四分位数(Q1)将数据分为前25%和后75%...
recommend-type

numpy:np.newaxis 实现将行向量转换成列向量

在Python的科学计算库NumPy中,`np.newaxis`是一个非常有用的工具,它允许你在数组操作中添加新的维度。在处理多维数据时,尤其是在进行矩阵运算时,`np.newaxis`可以帮助我们将一维的行向量转换为二维的列向量,这...
recommend-type

Python Numpy:找到list中的np.nan值方法

import numpy as np x = np.array([2, 3, np.nan, 5, np.nan, 5, 2, 3]) # 简单查找np.nan值 for item in x: if np.isnan(item): print('yes') ``` 在这个例子中,`np.isnan(item)`函数被用来遍历数组`x`的每个...
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。