python中删除unnamed_[译]如何去除pandas dataframe里面的Unnamed的列?
要去除Pandas DataFrame中的Unnamed列,可以使用以下代码:
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
这行代码会检查DataFrame中的每个列名是否以"Unnamed"开头,如果是则删除该列。最终返回一个不包含"Unnamed"列的新DataFrame。
另外,如果你想在读取CSV文件时避免生成Unnamed列,可以在读取时指定index_col=0
,这会将第一列作为索引列,而不是生成一个新的Unnamed列。例如:
df = pd.read_csv('filename.csv', index_col=0)
这将读取CSV文件,并将第一列作为索引列。
DataFrame里面Key列是unnamed
如果你的DataFrame中的Key列是unnamed
,那可能是因为在读取数据时,pandas默认会将没有列名的列命名为unnamed
。你可以使用df.columns
属性来查看列名列表,如果发现Key列的列名确实是unnamed
,可以使用df.rename()
方法来为该列添加列名。具体操作可以参考下面的示例代码:
import pandas as pd
# 读取一个没有列名的csv文件
df = pd.read_csv('example.csv')
# 查看列名
print(df.columns)
# 重命名列名
df.rename(columns={'Unnamed: 0': 'Key'}, inplace=True)
# 再次查看列名
print(df.columns)
运行上述代码后,你会发现第一次输出的结果是Index(['Unnamed: 0', 'Value'], dtype='object')
,Key列的列名确实是Unnamed: 0
。经过重命名后,第二次输出的结果是Index(['Key', 'Value'], dtype='object')
,Key列已经被重命名为Key。
pandas unnamed
pandas中的"Unnamed"列是在处理数据时产生的一个问题。可以使用以下解决方案来去除这列:df.loc[:, ~df.columns.str.contains("^Unnamed")]
这个解决方案使用了pandas的loc函数和str.contains函数。loc函数用于选择数据框中的特定行和列,而str.contains函数用于检查列名中是否包含指定的字符串。通过使用~操作符,我们可以选择不包含"Unnamed"的列。
以下是给出的例子: import numpy as np import pandas as pd
df = pd.DataFrame({'Unnamed: 0': [0, 1], 'School': ['S_1', 'S_1'], 'Class': ['C_1', 'C_1'], 'Gender': ['M', 'F'], 'Address': ['street_1', 'street_2'], 'Height': [173, 165], 'Weight': [63, 55], 'Math': [34.0, 40.0], 'Physics': ['A', 'B'], 'ID': [1101, 1102]})
new_df = df.loc[:, ~df.columns.str.contains("^Unnamed")] print(new_df)
相关推荐
















