C++ 使用哈夫曼编码压缩图片

时间: 2023-11-04 10:48:07 浏览: 169
哈夫曼编码是一种无损压缩算法,可以用来压缩图片。下面是使用哈夫曼编码压缩图片的步骤: 1. 读取图片数据:使用C语言中的文件操作函数读取图片数据,并将其存储到内存中。 2. 统计像素出现频率:遍历图片数据,统计每个像素值出现的次数。可以使用一个数组来记录每个像素值出现的次数。 3. 构建哈夫曼树:使用统计的像素出现频率构建哈夫曼树。可以使用一个优先队列来实现。 4. 生成哈夫曼编码表:遍历哈夫曼树,生成每个像素值对应的哈夫曼编码。可以使用一个哈希表来存储哈夫曼编码表。 5. 压缩图片数据:使用哈夫曼编码表将图片数据压缩。可以将每个像素值替换为对应的哈夫曼编码,然后将所有的哈夫曼编码拼接起来。 6. 存储压缩后的数据:将压缩后的数据存储到文件中。 7. 解压缩图片数据:读取压缩后的数据,并使用哈夫曼编码表将其解压缩。可以将压缩后的数据按照哈夫曼编码逐位解码,直到还原出原始的像素值序列。 8. 存储解压缩后的数据:将解压缩后的数据存储到文件中。 需要注意的是,使用哈夫曼编码压缩图片可能会导致压缩后的文件比原始文件还要大,这是因为哈夫曼编码只适用于具有一定重复性的数据。因此,在实际应用中需要根据具体情况选择合适的压缩算法。
相关问题

C++ 使用哈夫曼编码压缩图片的代码

哈夫曼编码是一种无损压缩方法,可以用于对图片进行压缩。下面是一个使用哈夫曼编码压缩图片的示例代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_NODE 256 typedef struct Node { unsigned char ch; int freq; struct Node *left, *right; } Node; typedef struct Heap { int size; Node *array[MAX_NODE]; } Heap; typedef struct Code { unsigned char *bits; int size; } Code; typedef struct Table { Code codes[MAX_NODE]; } Table; Node *createNode(unsigned char ch, int freq) { Node *node = (Node*) malloc(sizeof(Node)); node->ch = ch; node->freq = freq; node->left = node->right = NULL; return node; } Heap *createHeap() { Heap *heap = (Heap*) malloc(sizeof(Heap)); heap->size = 0; return heap; } void swap(Node **a, Node **b) { Node *tmp = *a; *a = *b; *b = tmp; } void heapify(Heap *heap, int idx) { int smallest = idx; int left = 2 * idx + 1; int right = 2 * idx + 2; if (left < heap->size && heap->array[left]->freq < heap->array[smallest]->freq) smallest = left; if (right < heap->size && heap->array[right]->freq < heap->array[smallest]->freq) smallest = right; if (smallest != idx) { swap(&heap->array[idx], &heap->array[smallest]); heapify(heap, smallest); } } int isLeaf(Node *node) { return !node->left && !node->right; } Node *extractMin(Heap *heap) { Node *node = heap->array[0]; heap->array[0] = heap->array[heap->size - 1]; heap->size--; heapify(heap, 0); return node; } void insertHeap(Heap *heap, Node *node) { heap->size++; int i = heap->size - 1; while (i && node->freq < heap->array[(i - 1) / 2]->freq) { heap->array[i] = heap->array[(i - 1) / 2]; i = (i - 1) / 2; } heap->array[i] = node; } Heap *buildHeap(int *freq) { Heap *heap = createHeap(); for (int i = 0; i < MAX_NODE; i++) if (freq[i]) insertHeap(heap, createNode(i, freq[i])); while (heap->size > 1) { Node *left = extractMin(heap); Node *right = extractMin(heap); Node *node = createNode('$', left->freq + right->freq); node->left = left; node->right = right; insertHeap(heap, node); } return heap; } void encode(Node *root, Code code, Table *table) { if (root) { if (isLeaf(root)) { table->codes[root->ch] = code; } else { Code leftCode = code; leftCode.bits[code.size++] = '0'; encode(root->left, leftCode, table); Code rightCode = code; rightCode.bits[code.size++] = '1'; encode(root->right, rightCode, table); } } } void writeHeader(FILE *fp, int *freq) { fwrite(freq, sizeof(int), MAX_NODE, fp); } void writeBits(FILE *fp, Code code, int *pos) { int bytePos = *pos / 8; int bitPos = *pos % 8; for (int i = 0; i < code.size; i++) { if (code.bits[i] == '1') fp[bytePos] |= 1 << bitPos; bitPos++; (*pos)++; if (bitPos == 8) { bytePos++; bitPos = 0; } } } void compress(char *filename) { FILE *fp = fopen(filename, "rb"); char outFilename[256]; strcpy(outFilename, filename); strcat(outFilename, ".huff"); FILE *outFp = fopen(outFilename, "wb"); int freq[MAX_NODE] = {0}; unsigned char ch; while (fread(&ch, sizeof(unsigned char), 1, fp)) freq[ch]++; Heap *heap = buildHeap(freq); Node *root = extractMin(heap); Table *table = (Table*) malloc(sizeof(Table)); for (int i = 0; i < MAX_NODE; i++) table->codes[i].bits = (unsigned char*) malloc(256); Code code; code.bits = (unsigned char*) malloc(256); code.size = 0; encode(root, code, table); writeHeader(outFp, freq); fseek(fp, 0, SEEK_SET); int pos = 0; unsigned char buffer = 0; while (fread(&ch, sizeof(unsigned char), 1, fp)) { Code code = table->codes[ch]; writeBits(&buffer, code, &pos); while (pos >= 8) { fwrite(&buffer, sizeof(unsigned char), 1, outFp); buffer = buffer >> 8; pos -= 8; } } if (pos) fwrite(&buffer, sizeof(unsigned char), 1, outFp); fclose(fp); fclose(outFp); } int main(int argc, char *argv[]) { if (argc != 2) { printf("Usage: %s <filename>\n", argv[0]); return 1; } compress(argv[1]); return 0; } ``` 这个程序将输入的图片文件进行压缩,并将压缩后的数据写入一个新的文件中。输出的文件名为原文件名加上 ".huff" 后缀。程序使用了哈夫曼编码来压缩数据。在压缩过程中先统计每个字节出现的频率,然后使用哈夫曼树来构建编码表,并将编码表写入输出文件的头部。接着遍历输入文件的每个字节,并将其对应的编码写入输出文件中。最后,如果最后一个字节的编码不足一个字节,将其填充为 0 后写入输出文件中。

如何在c++中使用哈夫曼树进行bmp的图片的解压缩

在 C++ 中使用哈夫曼树对 BMP 图片进行解压缩通常涉及到以下几个步骤: 1. **读取 BMP 文件**:首先,你需要从 BMP 文件中读取数据,包括位深度、图像宽度、高度和像素数据。C++ 的标准库如`std::ifstream`可以用来打开并读取文件。 2. **构建哈夫曼编码表**:对于每个像素的颜色值(如果是灰度图),通常会生成一个频率统计,最常见的颜色会分配较短的码字。通过计算得到哈夫曼树,并将每个颜色与其对应的码字关联起来。 3. **解码哈夫曼码**:在原始文件中,像素是以二进制形式存储的。利用构建的哈夫曼树,从右到左读取每一位,然后查找对应的字符,逐步还原出原始的像素信息。 4. **重建图像**:当所有像素的哈夫曼码都被解码后,将它们按照原始顺序放入新的内存缓冲区中,构建出解压缩后的图像数据。 5. **保存解压缩后的图像**:最后,你可以选择将解压缩后的数据写入一个新的文件,或者直接作为内存中的 Bitmap 数据结构使用。 以下是一个简化的伪代码示例: ```cpp class HuffmanNode { // ... 实现哈夫曼节点 }; void buildHuffmanTree(std::vector<unsigned char>& frequencies, std::vector<HuffmanNode*>& huffNodes); std::string decodeHuffmanCode(const HuffmanNode* node, const std::string& code); // 使用哈夫曼树解压缩 void decompressBMP(const std::string& compressedData, std::vector<unsigned char>& decompressedImage) { // ... (此处省略构建哈夫曼树和读取编码部分) for (const auto& pixelCode : compressedImage) { std::string decodedPixel = decodeHuffmanCode(huffRoot, pixelCode); // 解码像素并添加到解压结果中 decompressedImage.push_back(decodedPixel.back()); } }
阅读全文

相关推荐

最新推荐

recommend-type

运用哈夫曼编码压缩解压文件源代码

在给定的源代码中,我们可以看到,作者使用了哈夫曼编码来压缩文件,代码中包括了详细的注释,整个压缩过程可以分为以下几个步骤: 1. 读取文件:使用ifstream对象读取文件中的每个字符,并统计每个字符的频率信息...
recommend-type

C++实现哈夫曼树简单创建与遍历的方法

哈夫曼树,又称为最优二叉树或最小带权路径长度树,是一种特殊的二叉树,广泛应用于数据压缩、编码等领域。它具有以下特性:所有叶子节点都在最底层且位于最左边,非叶子节点没有左孩子或者没有右孩子,且树中不存在...
recommend-type

哈夫曼编码-译码器课程设计报告.docx

1. **哈夫曼编码**:哈夫曼编码是一种可变字长编码,用于无损数据压缩。编码过程中,首先根据字符的权值构建哈夫曼树,这是一个特殊的二叉树,其中每个叶子节点代表一个字符,权值表示字符的频率。通过从根节点到叶...
recommend-type

哈夫曼编码压缩解压缩程序(CPP写的)

本文将深入探讨哈夫曼编码的原理,并通过一个使用C++编写的哈夫曼编码压缩解压缩程序,来阐述其具体实现过程。 哈夫曼编码的基本思想是将出现频率高的字符赋予较短的编码,而频率低的字符赋予较长的编码,这样在...
recommend-type

哈夫曼编码(贪心算法)报告.doc

哈夫曼编码是一种基于贪心策略的高效数据文件压缩编码方法,其核心在于通过构建最优前缀码来实现编码效率的最大化。在本实验报告中,我们将深入理解哈夫曼编码的工作原理、设计思想以及其实现过程。 1. 问题描述: ...
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时