flink写数据到clickhouse的代码
时间: 2023-08-31 21:39:50 浏览: 179
### 回答1:
答: Flink 写入 Clickhouse 的代码可以采用 JDBC Sink 方式,具体实现可以参考 Flink 官方文档中的示例:https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/connectors/clickhouse.html。
### 回答2:
Flink是一个开源的流数据处理框架,而ClickHouse是一个高性能的列式数据库。使用Flink将数据写入到ClickHouse可以实现实时的数据处理和分析。
首先,需要在Flink项目中添加ClickHouse的依赖项。可以在pom.xml文件中添加以下代码:
```
<dependency>
<groupId>ru.yandex.clickhouse</groupId>
<artifactId>clickhouse-jdbc</artifactId>
<version>0.2.6</version>
</dependency>
```
然后,在Flink应用程序中使用ClickHouseSinkFunction将数据写入ClickHouse。以下是一个简单的示例代码:
```java
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.clickhouse.ClickHouseSink;
import org.apache.flink.streaming.connectors.clickhouse.ClickHouseSinkFunction;
import org.apache.flink.streaming.connectors.clickhouse.deps.GuavaDurationConverter;
import org.apache.flink.streaming.connectors.clickhouse.table.ClickHouseSinkBufferFlusher;
import org.apache.flink.streaming.connectors.clickhouse.table.ClickHouseSinkConfiguration;
import org.apache.flink.streaming.connectors.clickhouse.table.internal.ClickHouseStream;
import org.apache.flink.streaming.connectors.clickhouse.table.internal.options.ClickHouseOptions;
import org.apache.flink.types.Row;
import java.sql.Types;
public class FlinkClickHouseExample {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Tuple2<String, Integer>> stream = env.socketTextStream("localhost", 9999)
.map(new MapFunction<String, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> map(String s) throws Exception {
String[] parts = s.split(",");
return new Tuple2<>(parts[0], Integer.parseInt(parts[1]));
}
});
String[] fieldNames = {"name", "age"};
int[] fieldTypes = {Types.VARCHAR, Types.INTEGER};
ClickHouseOptions options = new ClickHouseOptions("jdbc:clickhouse://localhost:8123/default", "", "");
ClickHouseSinkFunction<Tuple2<String, Integer>> sinkFunction = new ClickHouseSinkFunction<>(fieldNames, fieldTypes, options);
ClickHouseSink<Tuple2<String, Integer>> sink = ClickHouseSink.buildSink(sinkFunction, new ClickHouseSinkConfiguration(), new ClickHouseSinkBufferFlusher(options));
stream.addSink(sink);
env.execute("Flink ClickHouse Example");
}
}
```
上述代码使用`socketTextStream`从Socket读取输入数据,并使用`map`函数将数据转换为Tuple2对象。然后,我们定义ClickHouse的字段名和字段类型,并创建ClickHouseOptions对象,指定ClickHouse的连接URL、用户名和密码。
接下来,我们创建ClickHouseSinkFunction对象,并将其传递给ClickHouseSink。最后,将DataStream添加到sink中,通过调用`env.execute`来启动Flink作业。
通过添加适当的ClickHouse配置,并修改DataStream的源,您可以根据实际需求来改变代码。以上代码只是一个简单的示例,供参考。
阅读全文