由决策树字典得到决策树可视化
时间: 2023-06-01 22:01:38 浏览: 110
决策树可视化是将决策树以图形化的方式呈现出来,便于理解和观察决策树的结构和规律。下面介绍一种方法,通过决策树字典来得到决策树可视化。
1. 导入需要的库
```python
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
```
2. 定义决策树字典
```python
tree_dict = {'feature_names': ['feature1', 'feature2', 'feature3'],
'class_names': ['class1', 'class2'],
'tree_structure': {'node_id': 0, 'feature': 1, 'threshold': 0.5, 'left_child': 1, 'right_child': 2, 'value': [10, 20]},
'n_classes': 2,
'n_features': 3}
```
其中,`feature_names`是特征名称列表,`class_names`是类别名称列表,`tree_structure`是决策树结构,`n_classes`是类别数,`n_features`是特征数。
3. 绘制决策树
```python
plt.figure(figsize=(8, 6))
plot_tree(tree_dict['tree_structure'], feature_names=tree_dict['feature_names'], class_names=tree_dict['class_names'], filled=True)
plt.show()
```
其中,`plot_tree`函数的参数有:
- `tree_structure`:决策树结构字典;
- `feature_names`:特征名称列表;
- `class_names`:类别名称列表;
- `filled`:是否使用颜色填充节点。
运行以上代码,即可得到决策树可视化图像。
阅读全文