pandas 以字符串读取数据_如何使用pandas.read_csv()将索引数据读取为字符串?...

时间: 2023-07-15 18:14:46 浏览: 121
PDF

使用pandas read_table读取csv文件的方法

star5星 · 资源好评率100%
你可以使用 `dtype` 参数将索引列指定为字符串类型。例如: ```python import pandas as pd # 读取 CSV 文件,将第一列指定为字符串类型 df = pd.read_csv('file.csv', dtype={'index_col_name': str}) ``` 将 `dtype` 参数设置为一个字典,键为索引列的名称,值为字符串类型即可。如果你的索引列不具有名称,则可以使用 `index_col` 参数来指定索引列的位置: ```python import pandas as pd # 读取 CSV 文件,将第一列指定为字符串类型 df = pd.read_csv('file.csv', dtype={0: str}, index_col=0) ``` 这里,我们将 `dtype` 参数设置为字典 `{0: str}`,表示将第一列(索引列)指定为字符串类型。同时,我们使用了 `index_col` 参数将第一列作为索引列。
阅读全文

相关推荐

# coding=utf-8 #加载化学库 from rdkit import Chem from rdkit.Chem import Draw from rdkit.Chem import AllChem import pandas as pd import os import csv # 读取 CSV 文件 data = pd.read_csv('dataSetB.csv') # 提取 rxn_smiles 列 # 获取每一列的数据 smiles_mapping_namerxn = data['rxnSmiles_Mapping_NameRxn'] smiles_mapping_indigotk = data['rxnSmiles_Mapping_IndigoTK'] smiles_indigoautomapperknime = data['rxnSmiles_IndigoAutoMapperKNIME'] # 创建目录 os.makedirs('D:/1/', exist_ok=True) os.makedirs('D:/2/', exist_ok=True) os.makedirs('D:/3/', exist_ok=True) # 遍历每个 rxn_smiles 字符串并打印 #for i, smi in enumerate(smiles_mapping_namerxn): # print(smi) # rxn = chem.allchem.reactionfromsmarts(smi) # if rxn is not none: # # 绘制反应结构 # img = draw.reactiontoimage(rxn) # img.show() # img.save(f'd:/1/reaction_{i}.png') # else: # #当无法解析rxn_smiles时,使用print语句打印出相应的消息,并将无法解析的smi值作为附加信息一起打印。 # print("failed to parse rxn_smiles.", smi) #for i, smi in enumerate(smiles_mapping_indigotk): # print(smi) # rxn = Chem.AllChem.ReactionFromSmarts(smi) # if rxn is not None: # 绘制反应结构 # img = Draw.ReactionToImage(rxn) # img.save(f'D:/2/reaction_{i}.png') # else: # 当无法解析rxn_smiles时,使用print语句打印出相应的消息,并将无法解析的smi值作为附加信息一起打印。 # print("Failed to parse rxn_smiles.", smi) def new_func(smi): rxn = Chem.AllChem.ReactionFromSmarts(smi) return rxn #for i, smi in enumerate(smiles_indigoautomapperknime): # print(smi) # rxn = new_func(smi) # if rxn is not None: with open('your_file.csv', 'r') as file: reader = csv.reader(file) rows = list(reader) for row in rows[42154:]: # 绘制反应结构 img = Draw.ReactionToImage(rxn) img.save(f'D:/3/reaction_{i}.png') lines=lines+1 else: #当无法解析rxn_smiles时,使用print语句打印出相应的消息,并将无法解析的smi值作为附加信息一起打印。 print("Failed to parse rxn_smiles.", smi)什么地方错了。、

import pandas as pd def basic_set(df): basic = {} for i in df.drop_duplicates().values.tolist(): # 去重.转列表 basic[str(i)] = [] # str转为字符串类型,每一个str(i)都制作一个索引,暂时是空的 for j, k in enumerate(df.values.tolist()): # 把数据放到对应的索引里面 if k == i: basic[str(i)].append(j) return basic def rough_set(data): data = data.dropna(axis=0, how='any') # 删去有缺失值的某些行 x_data = data.drop(['y'], axis=1) # 得到条件属性列:去掉决策属性y列,得到条件属性的数据 y_data = data.loc[:, 'y'] # 得到决策属性列 # 决策属性等价集 y_basic_set = [v for k, v in basic_set(y_data).items()] #y_basic_set [[1, 2, 5, 6], [0, 3, 4, 7]] # 条件属性等价集 x_basic_set = [v for k, v in basic_set(x_data).items()] #x_basic_set [[4], [0], [5], [1], [6], [7], [2], [3]] #######################Begin######################## #求正域POSc(D) pos = [] # 正域POSc(D) #计算决策属性D关于属性集全集C的依赖度r_x_y print('依赖度r_x_(y):', r_x_y) ########################End######################### # 探索条件属性中不可省关系 u = locals() # locals() 函数会以字典类型返回当前位置的全部局部变量 pos_va = locals() r = locals() columns_num = list(range(len(x_data.columns))) # range() 函数可创建一个整数列表,一般用在for循环中 # 收集属性重要度 imp_attr = [] for i in columns_num: c = columns_num.copy() c.remove(i) u = data.iloc[:, c] # iloc通过行号获取行数据,不能是字符 u_basic_set = [v for k, v in basic_set(u).items()] #去掉一个属性的属性子集的等价集 #######################Begin######################## #求正域POSc-a(D) pos_va = [] # 正域POSc-a(D) #计算决策属性D关于属性集子集C-a的依赖度r ########################End######################### r_diff = round(r_x_y - r, 4) # 计算属性的重要度 imp_attr.append(r_diff) # 把该属性的重要度存在imp_attr里面 print('第',imp_attr.index(imp_attr==0)+1,'个属性重要度为0,可约简') def main(): #读取文件数据 data = pd.read_csv(filepath_or_buffer='data3.csv') rough_set(data) if __name__ == '__main__': main()请补全上述从begin到end的代码

最新推荐

recommend-type

pandas连接数据库,从数据库读取数据,将数据保存到数据库

而当我们需要处理的数据存储在数据库中时,`pandas`提供了便捷的接口来连接数据库、读取数据以及将数据写入数据库。在本例中,我们将深入探讨如何使用`pandas`连接MySQL数据库,并进行数据的读取和保存。 首先,...
recommend-type

Pandas的read_csv函数参数分析详解

Pandas的`read_csv`函数是数据科学家和分析人员在处理CSV文件时最常用的工具之一。它能够方便地将CSV格式的数据导入到DataFrame对象中,提供了丰富的参数来满足各种复杂需求。下面,我们将深入探讨`read_csv`函数的...
recommend-type

使用Python Pandas处理亿级数据的方法

2. 数据类型转换:将数据类型转换为更节省空间的类型,如将字符串转换为类别(`astype('category')`)。 3. 并行处理:利用多核CPU,通过`dask`库实现并行计算。 4. 分布式计算:如果内存和计算资源允许,可以使用...
recommend-type

pandas大数据分析笔记.docx

本笔记将对 pandas 的常用 API、数据导入、数据输出、查看数据、索引、数据清洗、排序、筛选、加入、合并、统计等方面进行总结和说明。 一、数据导入 pandas 提供了多种方式来导入数据,包括: * 导入 CSV 文件:...
recommend-type

TensorFlow实现从txt文件读取数据

需要注意的是,无论是使用NumPy还是Pandas,读取后的数据形状必须与你在TensorFlow中定义的占位符形状相匹配,以确保数据能够正确地输入到模型中。在构建模型时,要确保数据预处理阶段处理了缺失值、异常值,并进行...
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。