使用 PaddlePaddle 框架实现行为克隆算法的代码及训练测试代码。
时间: 2023-08-07 17:03:14 浏览: 270
以下是使用PaddlePaddle框架实现行为克隆算法的代码及训练测试代码。
首先,需要安装PaddlePaddle框架和一些必要的依赖库。可以在终端中执行以下命令进行安装:
```
pip install paddlepaddle==2.0.0
pip install gym
pip install gym[atari]
pip install opencv-python
```
其中,gym和atari是用于构建游戏环境的依赖库,opencv-python用于对游戏画面进行处理。
接下来,我们来实现行为克隆算法的代码。首先是构建游戏环境和模型的代码:
```python
import gym
import paddle
import paddle.nn as nn
import cv2
# 构建游戏环境
env = gym.make('Pong-v0')
# 构建模型
class PongModel(nn.Layer):
def __init__(self):
super(PongModel, self).__init__()
self.conv1 = nn.Conv2D(in_channels=4, out_channels=32, kernel_size=8, stride=4, padding=0)
self.conv2 = nn.Conv2D(in_channels=32, out_channels=64, kernel_size=4, stride=2, padding=0)
self.conv3 = nn.Conv2D(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=0)
self.fc1 = nn.Linear(in_features=64*7*7, out_features=512)
self.fc2 = nn.Linear(in_features=512, out_features=env.action_space.n)
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = nn.functional.relu(self.conv2(x))
x = nn.functional.relu(self.conv3(x))
x = paddle.flatten(x, start_axis=1)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
model = PongModel()
```
这里使用了一个简单的卷积神经网络作为模型,输入是游戏画面的四张连续帧,输出是游戏的动作。接下来是训练代码:
```python
# 定义优化器和损失函数
optimizer = paddle.optimizer.Adam(learning_rate=1e-4, parameters=model.parameters())
criterion = nn.CrossEntropyLoss()
# 训练模型
for i_episode in range(1000):
observation = env.reset()
prev_observation = None
done = False
total_reward = 0
while not done:
# 处理游戏画面
observation = cv2.cvtColor(observation, cv2.COLOR_RGB2GRAY)
observation = cv2.resize(observation, (84, 84))
observation = observation.astype('float32') / 255.0
if prev_observation is None:
state = paddle.to_tensor([observation, observation, observation, observation])
else:
state = paddle.to_tensor([prev_observation, observation, observation, observation])
state = paddle.unsqueeze(state, axis=0)
# 选择动作
with paddle.no_grad():
logits = model(state)
action = paddle.argmax(logits, axis=1).numpy()[0]
# 执行动作
observation, reward, done, info = env.step(action+2)
prev_observation = observation
total_reward += reward
# 更新模型
optimizer.clear_grad()
loss = criterion(logits, paddle.to_tensor([action]))
loss.backward()
optimizer.step()
# 打印训练信息
print('Episode {}: Total Reward = {}'.format(i_episode+1, total_reward))
```
这里使用了类似于Q-learning的方法,每次选择模型预测的最优动作,并执行该动作,然后用损失函数来衡量模型的预测和实际动作的差距,并用优化器来更新模型参数。最后是测试代码:
```python
# 测试模型
observation = env.reset()
prev_observation = None
done = False
total_reward = 0
while not done:
# 处理游戏画面
observation = cv2.cvtColor(observation, cv2.COLOR_RGB2GRAY)
observation = cv2.resize(observation, (84, 84))
observation = observation.astype('float32') / 255.0
if prev_observation is None:
state = paddle.to_tensor([observation, observation, observation, observation])
else:
state = paddle.to_tensor([prev_observation, observation, observation, observation])
state = paddle.unsqueeze(state, axis=0)
# 选择动作
with paddle.no_grad():
logits = model(state)
action = paddle.argmax(logits, axis=1).numpy()[0]
# 执行动作
observation, reward, done, info = env.step(action+2)
prev_observation = observation
total_reward += reward
# 打印测试结果
print('Total Reward = {}'.format(total_reward))
```
这里的测试代码与训练代码基本相同,只是没有更新模型参数,而是用模型来预测动作并执行动作,最后输出总得分。
阅读全文