clc clear all; close all; %%6-9 T=0.2; Q=0.9; sigma=sqrt(Q); R=0.6; I=eye(3);%返回3*3单位矩阵 N=200; a=0.11; w=sigma*randn(N,1); pusi=sqrt(R)*sqrt(1-exp(-2*a*T))*randn(N,1); Ps=exp(-a*T); v=zeros(N,1); v(1,1)=pusi(1,1); for i=2:N v(i,1)=Ps*v(i-1,1)+pusi(i,1); end Phi=[1 T 0.5*T^2;0 1 T;0 0 1]; G=[0 0 T]'; H=[1 0 0]; xr(: ,1)=zeros(3,1); xr(3,1)=w(1,1); for i=2:N xr(:, i)=Phi*xr(: ,i-1)+G*w(i,1); z(:,i)=H*xr(:,i)+v(i,1); end Qtemp=G*Q*G'; R_star=H*Qtemp*H'+R; J=Qtemp*H'*inv(R_star); H_star=H*Phi-Ps*H; Phi_star=Phi-J*H_star; Q_star=Qtemp-Qtemp*H'*inv(R_star)*H*Qtemp; for i=1:N-1 z_star(:, i)=z(:,i+1)-Ps*z(:,i) ; end xe(:, 1)=zeros(3,1); Ppos=eye(3); Ppre(:, 1)=diag(Ppos); Pest(:, 1)=diag(Ppos); xe(:,1)=xe(:,1)+Ppos*H'*inv(H*Ppos*H'+R)*(z(:,1)-H*xe(:,1)); Ppos=inv(inv(Ppos)+H'*inv(R)*H); for i=2:N-1 x(:,i)=Phi_star*xe(: ,i-1)+J*z_star(:, i-1); Pneg=Phi_star*Ppos*Phi_star'+Q_star; Ppre(:,i)=diag(Pneg); K(:,i)=Pneg*H_star'*inv(H_star*Pneg*H_star'+R_star); Ppos=(I-K(:,i)*H_star)*Pneg; Pest(:,i)=diag(Ppos);%提取对角元素 xe(:,i)=x(:,i)+K(:,i)*(z_star(:, i)-H_star*x(:,i))%状态估计 end xe1(:,1)=zeros(3,1); Ppos1=eye(3) ; Ppre1(:,1)=diag(Ppos1); Pest1(:,1)=diag(Ppos1); R1=R*(1-exp(-2*a*T)); for i=2:N-1 x1(:,i)=Phi_star*xe1(:,i-1); Pneg1=Phi*Ppos1*Phi'+G*Q*G'; Ppre1(:,i)=diag (Pneg1); K1(:,i)=Pneg1*H'*inv(H*Pneg1*H'+R1); Ppos1=(I-K1(:,i)*H)*Pneg1; Pest1(: , i)=diag(Ppos1);%提取对角元素 xe1(:,i)=x1(:, i)+K1(:,i)*(z(:,i)-H*x1(:,i))%状态估计 end pos_diff=xe(1,: )-xr(1,1:N-1); pos_diff1=xe1(1,:)-xr(1,1:N-1); pos_diff_m=mean(pos_diff); pos_diff_s=std(pos_diff); pos_diff_m1=mean(pos_diff1); pos_diff_s1=std(pos_diff1); t=(1:N-1)*T; plot(t, pos_diff,'b-', t, pos_diff1, 'ro--') ; legend('状态扩展','近似为白噪声'); xlabel('时间(s)'); xlabel('位置误差(m)')
时间: 2023-06-24 16:08:31 浏览: 173
这段代码是一个基于卡尔曼滤波的状态估计器,用于估计物体的位置。其中,Q和R分别代表过程噪声和观测噪声的方差,sigma为Q的标准差,I为3*3的单位矩阵,N为采样点数,a为衰减系数,w和pusi分别为过程噪声和观测噪声,v为真实观测值,Phi、G和H为状态转移、过程噪声和观测矩阵,xr为真实状态,z为观测值,J为卡尔曼增益,H_star、Phi_star和Q_star为增广状态矩阵,xe为状态估计值,Ppos、Ppre和Pest分别为预测、实际和估计的协方差矩阵,K为卡尔曼增益矩阵,x1、Pneg1和K1为近似为白噪声的状态估计器的变量。最后,通过计算状态估计值与真实状态的误差来评估状态估计器的性能。
相关问题
% clc % clear all % a=20e-9; % eps0=8.854e-12; % eps_h=70eps0; % sigma_h=0.1; % eps_i=12eps0; % sigma_i=500;
这段代码是MATLAB代码,主要实现的是对一些变量进行赋值操作。其中:
% clc:清空命令窗口
% clear all:清除所有变量
% a=20e-9:将20乘以10的负9次方赋值给变量a
% eps0=8.854e-12:将8.854乘以10的负12次方赋值给变量eps0
% eps_h=70*eps0:将70乘以eps0的值赋值给变量eps_h
% sigma_h=0.1:将0.1赋值给变量sigma_h
% eps_i=12*eps0:将12乘以eps0的值赋值给变量eps_i
% sigma_i=500:将500赋值给变量sigma_i
如果您需要进一步了解这些变量的含义和用途,可以提出相关问题。
clc; clear; close all; % Parameters n = 100; % Number of particles L = 10; % Length of the container T = 300; % Temperature m = 1; % Mass of the particles r_min = 0.1; % Minimum distance between two particles每句什么意思
这是一段 MATLAB 代码,表示在模拟分子动力学过程中设置一些参数。其中:
- clc; clear; close all; 表示清空当前 MATLAB 工作空间,关闭所有打开的图形窗口。
- n = 100; 表示模拟系统中粒子的数量为100。
- L = 10; 表示模拟系统的边长为10个单位长度。
- T = 300; 表示模拟系统的温度为300K。
- m = 1; 表示模拟系统中粒子的质量为1。
- r_min = 0.1; 表示模拟系统中两个粒子之间的最小距离为0.1个单位长度。
阅读全文