#加载数据集 digits = load_digits() #创建dataframe data = pd.DataFrame(digits.data, columns = digits.feature_names) data['class'] = digits.target#加载数据集 digits = load_digits() #创建dataframe data = pd.DataFrame(digits.data, columns = digits.feature_names) data['class'] = digits.target#训练模型:线性SVM clf1 = svm.LinearSVC() # 这里的参数gamma和C可以根据需要进行调整 clf1.fit(X_train, y_train) y_predict = clf1.predict(X_test) #y测试集预估 print("线性SVM测试集准确率:", clf1.score(X_test, y_test)) print("线性SVM", classification_report(y_test, clf1.predict(X_test))) #模型训练:RBF核函数SVM clf2 = svm.SVC() # 这里的参数gamma和C可以根据需要进行调整 clf2.fit(X_train, y_train) y_predict = clf2.predict(X_test) #y测试集预估 print("RBF核函数SVM准确率:", clf2.score(X_test, y_test)) print("RBF核函数SVM", classification_report(y_test, clf2.predict(X_test)))
时间: 2024-04-23 08:22:14 浏览: 111
SVM的几个核函数对说话人身份识别的技术研究 根据具体的数据得到特征 然后采取svm分类,svm包含高斯核函数 线性核函数 RB
这段代码是用来训练两个不同的支持向量机(SVM)模型,一个是使用线性核函数的线性SVM模型,另一个是使用高斯径向基核函数的SVM模型。先加载了手写数字数据集,然后将其转换为DataFrame格式,并将目标变量添加到数据帧中。接着,使用训练集训练两个不同的SVM模型,分别是线性SVM和RBF核函数SVM,并使用测试集进行评估,输出它们的准确率和分类报告。
阅读全文