将以下代码:import os import pandas as pd folder_path = "D:/活动生成" file_name = "活动.xlsx" new_file_name = "一口价3.xlsx" activity_file_path = os.path.join(folder_path, file_name) activity_df = pd.read_excel(activity_file_path) discounts = {"6.9折": 0.69, "5折": 0.5, "3.9折": 0.39} new_price_df = pd.DataFrame(columns=["商品编码", "价格"]) for index, row in activity_df.iterrows(): if row["活动"] in discounts: standard_price = row["标准售价"] discount = discounts.get(row["活动"], 1) new_price = round(standard_price * discount, 2) # convert product code to 7 digits product_code = str(row["商品编码"]).zfill(7) new_price_df.loc[index] = [product_code, new_price] new_file_path = os.path.join(folder_path, new_file_name) new_price_df.to_excel(new_file_path, index=False) print("已生成") 生成一个exe文件,并可以让我下载使用
时间: 2024-03-03 19:48:34 浏览: 139
为了将Python代码转换为可执行文件(exe文件),你可以使用PyInstaller库。首先,你需要在命令行中安装PyInstaller库:
```
pip install pyinstaller
```
安装完成后,打开命令行,进入代码所在目录,运行以下命令:
```
pyinstaller --onefile filename.py
```
其中,`filename.py`是你要打包成可执行文件的Python文件名。执行完这个命令后,PyInstaller将会在同一目录下生成一个`dist`文件夹,里面就是可执行文件。你可以将`dist`文件夹中的`filename.exe`文件发送给用户使用。
需要注意的是,如果你的Python文件中用到了第三方库,那么在生成可执行文件之前,你需要先将这些库打包进来。你可以使用以下命令生成一个包含所有依赖库的可执行文件:
```
pyinstaller --onefile --add-data "path/to/library;." filename.py
```
其中,`path/to/library`是你要打包进来的依赖库的路径。如果有多个依赖库,可以多次使用`--add-data`参数。
相关问题
代码:import os import pandas as pd folder_path = "D:/活动生成" file_name = "活动.xlsx" new_file_name = "一口价3.xlsx" activity_file_path = os.path.join(folder_path, file_name) activity_df = pd.read_excel(activity_file_path) discounts = {"6.9折": 0.69, "5折": 0.5, "3.9折": 0.39} new_price_df = pd.DataFrame(columns=["商品编码", "价格"]) for index, row in activity_df.iterrows(): if row["活动"] in discounts: standard_price = row["标准售价"] discount = discounts.get(row["活动"], 1) new_price = round(standard_price * discount, 2) # only save the 7-digit 商品编码 product_code = str(row["商品编码"]) if len(product_code) == 7: new_price_df.loc[index] = [product_code, new_price] new_file_path = os.path.join(folder_path, new_file_name) new_price_df.to_excel(new_file_path, index=False) print("已生成") 没法保存商品编码为0开头的商品编码,例如商品编码为:0311069的商品编码不能保存,我需要将0开头的商品编码能进行计算的同时也保存下来
可以将商品编码转换为字符串后,判断字符串长度是否为7位,如果不足7位,在前面添加相应数量的0,使其长度为7位。修改后的代码如下:
```
import os
import pandas as pd
folder_path = "D:/活动生成"
file_name = "活动.xlsx"
new_file_name = "一口价3.xlsx"
activity_file_path = os.path.join(folder_path, file_name)
activity_df = pd.read_excel(activity_file_path)
discounts = {"6.9折": 0.69, "5折": 0.5, "3.9折": 0.39}
new_price_df = pd.DataFrame(columns=["商品编码", "价格"])
for index, row in activity_df.iterrows():
if row["活动"] in discounts:
standard_price = row["标准售价"]
discount = discounts.get(row["活动"], 1)
new_price = round(standard_price * discount, 2)
# convert product code to 7 digits
product_code = str(row["商品编码"]).zfill(7)
new_price_df.loc[index] = [product_code, new_price]
new_file_path = os.path.join(folder_path, new_file_name)
new_price_df.to_excel(new_file_path, index=False)
print("已生成")
```
这样就可以保存商品编码为0开头的商品编码了。
代码:import os import pandas as pd print("开始计算一口价") folder_path = "D:/一口价生成" file_name = "活动.xlsx" new_file_name = "一口价及升价3.xlsx" activity_file_path = os.path.join(folder_path, file_name) activity_df = pd.read_excel(activity_file_path) discounts = {"6.9折": 0.69, "5折": 0.5, "3.9折": 0.39} new_price_df = pd.DataFrame(columns=["商品编码", "价格"]) for index, row in activity_df.iterrows(): if row["活动"] in discounts: standard_price = row["标准售价"] discount = discounts.get(row["活动"], 1) new_price = round(standard_price * discount, 2) product_code = str(row["商品编码"]).zfill(7) new_price_df.loc[index] = [product_code, new_price] elif isinstance(row["活动"], int) or isinstance(row["活动"], float): product_code = str(row["商品编码"]).zfill(7) new_price = int(row["活动"]) new_price_df.loc[index] = [product_code, new_price] new_file_path = os.path.join(folder_path, new_file_name) new_price_df.to_excel(new_file_path, index=False) new_file_path = os.path.join(folder_path, new_file_name) new_price_df.to_excel(new_file_path, index=False) print("已生成") 将“活动”列中所有数值都以int类型输出了,请修改代码输出类型位:如果是int类型,则输出int类型。是float类型,就输出float类型。,
代码:
import os
import pandas as pd
print("开始计算一口价")
folder_path = "D:/一口价生成"
file_name = "活动.xlsx"
new_file_name = "一口价及升价3.xlsx"
activity_file_path = os.path.join(folder_path, file_name)
activity_df = pd.read_excel(activity_file_path)
discounts = {"6.9折": 0.69, "5折": 0.5, "3.9折": 0.39}
new_price_df = pd.DataFrame(columns=["商品编码", "价格"])
for index, row in activity_df.iterrows():
if row["活动"] in discounts:
standard_price = row["标准售价"]
discount = discounts.get(row["活动"], 1)
new_price = round(standard_price * discount, 2)
product_code = str(row["商品编码"]).zfill(7)
new_price_df.loc[index] = [product_code, new_price]
elif isinstance(row["活动"], int):
product_code = str(row["商品编码"]).zfill(7)
new_price = int(row["活动"])
new_price_df.loc[index] = [product_code, new_price]
elif isinstance(row["活动"], float):
product_code = str(row["商品编码"]).zfill(7)
new_price = float(row["活动"])
new_price_df.loc[index] = [product_code, new_price]
new_file_path = os.path.join(folder_path, new_file_name)
new_price_df.to_excel(new_file_path, index=False)
print("已生成")
修改后的代码中,增加了判断“活动”列中是否为float类型的判断条件,并针对不同类型输出对应类型的数据。
阅读全文